Supporting Information

Molecularly Engineered Dual-Crosslinked Elastomer Vitrimers with

Superior Strength, Improved Creep Resistance, and Retained Malleability

Lin Wang ${ }^{\text {a }}$, Yingjun Liu*a, ${ }^{\text {b }}$, Yunhe Qiao $^{\text {a }}$, Yuli Wang ${ }^{\text {a }}$, Ziwen Cui ${ }^{\text {a }}$, Shaoyi Zhu ${ }^{\text {a }}$, Fuwei Dong ${ }^{\text {a }}$, Sikun Fang ${ }^{\text {a }}$, Aihua Du*a
${ }^{a}$ Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
${ }^{\mathrm{b}}$ South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, China

Scheme S1. Synthesis of DKP.

Figure S1. The ${ }^{1} \mathrm{H}$ NMR spectrum of DKP. *: DMSO- d_{6}.

Figure S2. (a) The FTIR spectra of SBR-3.5DKP and S-B-3.5DKP; (b) The peak intensity ratio ($\mathrm{I}_{908} / \mathrm{I}_{1452}$) for SBR-yDKP and S-B-yDKP.

Figure S3. As in Figure 2 except the spectra were recorded as a function of decreasing temperature from 160 to $20^{\circ} \mathrm{C}$.

Figure S4. The first loading-unloading cycle of S-B-yDKP.

Figure S5. The stress-strain curves for original and water soaked (a) S-B-0DKP and (b) S-B-3.5DKP.

Figure S6. The modulus at 200% strain for S-B-3.5DKP at different strain rates.

Figure S7. Cyclic strain/recovery profiles of S-B-1.4DKP during heating process with a stress of 0.03 MPa .

Figure S8. The FTIR spectra of original and recycled (a) S-B-0DKP and (b) S-B3.5DKP.

Figure S9. Temperature dependence of original and recycled (a) S-B-0DKP and (b) S-B-3.5DKP.

Figure S10. (a) TGA curves for S-B-0DKP, S-B-1.4DKP and S-B-3.5DKP; (b) Isothermal TGA curves of S-B-0DKP, S-B-1.4DKP and S-B-3.5DKP at $200^{\circ} \mathrm{C}$.

Table S1 Mechanical properties of S-B-yDKP.

Samples	Stress at 100% strain (MPa)	Ultimate stress (MPa)	Breaking strain $(\%)$	Fracture energy $\left(\mathrm{MJ} / \mathrm{m}^{3}\right)$
S-B-0DKP	0.47 ± 0.06	1.10 ± 0.26	352 ± 55	2.05
S-B-0.7DKP	1.17 ± 0.11	4.37 ± 0.31	390 ± 19	7.48
S-B-1.4DKP	1.97 ± 0.06	5.90 ± 0.61	328 ± 49	11.54
S-B-2.3DKP	4.30 ± 0.17	8.60 ± 0.44	278 ± 26	14.6
S-B-3.5DKP	5.07 ± 0.38	10.2 ± 1.87	308 ± 24	22.79

