Supplemental files

Bifunctional conjugated microporous polymers based filters for highly

efficient PM and gaseous iodine capture

Zhuoyue Tian^a, Xingyun Ye^a, Peilei Zhou^a, Zhaoqi Zhu^a, Jiyan Li^a, Hanxue Sun^a,

Weidong Liang^a, Yin Liu^b, An Li^a*

^aCollege of Petrochemical Technology, Lanzhou University of Technology, Langongpi

ng Road 287, Lanzhou 730050, P. R. China

^bGansu Research Institute of chemical Industry Co., Ltd., Guchengping Road 1, Lanzhou 730050, P. R. China

*Corresponding author: Prof. Dr. An Li, Tel.: +86-931-7823125. Fax: +86-931-

7823125.

E-mail address: lian2010@lut.cn (A. Li)

Characterization

The AVANCE III 400 MHz solid-state NMR analyzer from Bruker, USA was used for ¹³C CP/MAS NMR. The morphology of the CMPs was taken on Scanning electron microscope (SEM JSM-6701F) and Transmission electron microscope (TEM TecnaiG2 TF20). The morphology of the samples was taken on scanning electron microscope (TESCAN MIRA3) under a vacuum environment. The specific surface area and porosity of the as prepared CMPs was measured by N2 adsorption and desorption at 77.3 k using a volumetric sorption analyzer (micromeritics ASAP 2020). Before analysis, the samples were degassed at 120 °C for 12 h under vacuum. XPS spectra were measured using a Physical Electronics 5000 Versa Probe II Scanning ESCA (XPS) Microprobe. TGA analysis was carried out using a STA 6000 (PerkinElmer Instrument Co., Ltd. USA) to investigate thermal stability of the samples over a temperature range of 25 to 800 °C at a rate of 5 °C min⁻¹ under N₂ atmosphere. Filtration efficiency were tested by particle counter (DT-9881M, Shenzhen Huachang Science and Technology Industry Co., Ltd.).

Figure S1. The image of the acrylic box and the demo image of PM filtration.

Figure S2. The digital images of CMPs@6 and CMPs@7 after PM filtration for 48 h.

Figure S3. The digital images of CMPs@6 and CMPs@7 after washed by methanol 5 times.

Figure S4. The digital images of CMPs@6 and CMPs@7 heated to 500 °C.

Temperature (°C)	QF of CMPs@6		QF of CMPs@7	
	PM _{2.5}	PM_{10}	PM _{2.5}	PM ₁₀
100	0.0148	0.0167	0.019	0.0617
200	0.0138	0.0163	0.0178	0.0186
300	0.014	0.0202	0.0197	0.0214
400	0.0177	0.0231	0.0199	0.0242
500	0.0225	0.0298	0.0227	0.0286

Table S1. The QF of CMPs@6 and CMPs@7.

Figure S5. The capture performance of CMPs@6 and CMPs@7 in three cycles.

Figure S6. Filtration efficiency and pressure drop for CMPs@6(a) and CMPs@7(b) with different

thickness.