Supporting Information for:

Synthesis and Derivatization of Epoxy-Functional Sterically-Stabilized Diblock Copolymer Spheres in Non-Polar Media: Does the Spatial Location of the Epoxy Groups Matter?

Csilla György^a, Timothy Smith^b, David J. Growney^b and Steven P. Armes^{a,*}

Table of Contents

Figure S1. Experimental setup for nanoparticle derivatization using acetic acid
Figure S2. ¹ H NMR spectra recorded for PLMA ₆₃ -PGlyMA ₈₉ and P(LMA ₅₀ - <i>stat</i> -GlyMA ₉)- PMMA ₆₇ diblock copolymers
Figure S3. GPC curves recorded for the PLMA ₆₃ and P(LMA ₅₀ - <i>stat</i> -GlyMA ₉) precursors and the PLMA ₆₃ -PGlyMA ₈₉ and P(LMA ₅₀ - <i>stat</i> -GlyMA ₉)-PMMA ₆₇ diblock copolymers .S3
Figure S4. Assigned ¹ H NMR spectra recorded for the model reaction of GlyMA with benzylamine
Figure S5. ¹ H NMR spectra recorded for the reaction of the P(LMA ₅₀ - <i>stat</i> -GlyMA ₉)-PMMA ₆₇ nanoparticles with various amines
Figure S6. Assigned ¹ H NMR spectra recorded for the reaction of GlyMA with 1- butanethiol and for the reaction of P(LMA ₅₀ - <i>stat</i> -GlyMA ₉)-PMMA ₆₇ with 1-butanethiol S6
Figure S7. Digital photograph recorded for a 20% w/w dispersion of P(LMA ₅₀ - <i>stat</i> -GlyMA ₉)-PMMA ₆₇ nanoparticles and the same dispersion after heating to 110 °C for 40 h
Figure S8. ¹ H NMR spectra recorded for the P(LMA ₅₀ - <i>stat</i> -GlyMA ₉)-PMMA ₆₇ diblock copolymer on heating to 110 °C for 88 h under a N ₂ atmosphereS7
Figure S9. GPC curves recorded for the P(LMA ₅₀ - <i>stat</i> -GlyMA ₉)-PMMA ₆₇ diblock copolymer after heating to 40, 70 or 90 °C for 17 hS8
Figure S10. ¹ H NMR spectra and GPC curve recorded for the P(LMA ₅₀ - <i>stat</i> -GlyMA ₉)-PMMA ₆₇ diblock copolymer after heating a 1.0% w/w dispersion to 110 °CS8
Figure S11. ¹ H NMR spectra recorded for the PLMA ₆₃ -PGlyMA ₈₉ diblock copolymer after heating to 40, 70 or 90 °C for 17 h
Figure S12. FT-IR spectra recorded for the PLMA ₆₃ -PGlyMA ₈₉ diblock copolymer both before and after heating to 110 °C for 17 hS9

Figure S1. Experimental setup when reacting a 20% w/w dispersion of PLMA₆₃-PGlyMA₈₉ nanoparticles in mineral oil with 50% v/v aqueous acetic acid at 110 °C.

Figure S2. ¹H NMR spectra recorded in CD₂Cl₂ for the PLMA₆₃-PGlyMA₈₉ (green spectrum) and P(LMA₅₀-*stat*-GlyMA₉)-PMMA₆₇ (blue spectrum) diblock copolymers. To determine the degree of retention of the epoxy groups, the integrated aromatic proton signals *a* assigned to the copolymer end-groups at 7.10-8.00 ppm were compared to the intensity of the methine proton *b* assigned to the epoxy rings at 3.12-3.33 ppm.

Figure S3. THF GPC curves (refractive index detector; *vs.* a series of near-monodisperse poly(methyl methacrylate) calibration standards) recorded for: (**a**) the PLMA₆₃ precursor and the corresponding PLMA₆₃-GlyMA₈₉ diblock copolymer; (**b**) the P(LMA₅₀-*stat*-GlyMA₉) precursor and the corresponding P(LMA₅₀-*stat*-GlyMA₉)-PMMA₆₇ diblock copolymer.

Figure S4. Assigned ¹H NMR spectra recorded in CD_2Cl_2 for the reaction between GlyMA and benzylamine: initial mixture (black spectrum) and after heating for 17 h at 70 °C (red spectrum). This reaction was conducted at 20% w/w solids in mineral oil using an [amine]/[epoxy] molar ratio of 2.0.

Figure S5. ¹H NMR spectra recorded in CD₂Cl₂ for a P(LMA₅₀-*stat*-GlyMA₉)-PMMA₆₇ diblock copolymer after reacting a 20% w/w dispersion of such nanoparticles in mineral oil with each of the following four amines in turn: *N*-methylaniline (black spectrum), benzylamine (blue spectrum), 2-(dimethylamino)propylamine (red spectrum) or triethylenetetramine (green spectrum). Conditions: 70 °C for 17 h, [amine]/[epoxy] molar ratio = 1.0. By comparing satellite signal *a* assigned to the PMMA backbone at 3.43-3.47 ppm to the integrated methine signal *b* of the epoxy ring at 3.12-3.30 ppm, the approximate loss of the original epoxy groups was estimated to be 12%, 16%, 23% or 68% when using *N*-methylaniline, benzylamine, 2-(dimethylamino)propylamine or triethylenetetramine, respectively.

Figure S6. Schematic reaction of 1-butanethiol with (**a**) GlyMA monomer or (**b**) P(LMA₅₀*stat*-GlyMA₉)-PMMA₆₇ nanoparticles. (**c**) Assigned ¹H NMR spectra recorded in CD₂Cl₂ for a reaction mixture containing GlyMA and 1-butanethiol at 20% w/w solids in mineral oil at 0 h (green spectrum) and after heating at 70 °C for 17 h (blue spectrum) when using an [amine]/[epoxy] molar ratio of 2.0. The red spectrum was obtained for a P(LMA₅₀-*stat*-GlyMA₉)-PMMA₆₇ diblock copolymer after heating the corresponding 20% w/w copolymer dispersion in mineral oil at 70 °C for 17 h using a [thiol]/[epoxy] molar ratio of 50. A % loss of epoxy groups of 13% was determined by comparing the satellite signal *k* assigned to the PMMA backbone at 3.43-3.47 ppm to the methine signal *i* corresponding to the epoxide ring at 3.12-3.30 ppm.

Figure S7. Digital photograph recorded for the original free-flowing 20% w/w dispersion of $P(LMA_{50}-stat-GlyMA_9)$ -PMMA₆₇ nanoparticles (left-hand vial) and the viscous gel that is obtained after heating the same dispersion to 110 °C for 40 h (right-hand vial).

Figure S8. ¹H NMR spectra recorded in CD₂Cl₂ for the P(LMA₅₀-*stat*-GlyMA₉)-PMMA₆₇ diblock copolymer for the initial reaction mixture (black spectrum) and after heating to 110 °C for either 17 h (blue spectrum) or 88 h (red spectrum). Prior to the heating experiment, the 20% w/w copolymer dispersion was deoxygenated using a stream of N₂ gas for 30 min. A loss of epoxy groups of 21% was calculated by comparing the satellite signal *a* assigned to the PMMA backbone at 3.43-3.47 ppm to the methine signal *b* corresponding to the epoxy ring at 3.12-3.30 ppm.

Figure S9. Comparison of the THF GPC curve recorded for the $P(LMA_{50}-stat-GlyMA_9)$ -PMMA₆₇ diblock copolymer (prepared as a 20% w/w dispersion of nanoparticles in mineral oil at 90 °C; blue curves) with that obtained for the same copolymer (red data) after heating the 20% w/w dispersion for 17 h at (**a**) 40 °C, (**b**) 70 °C or (**c**) 90 °C, respectively.

Figure S10. (a) ¹H NMR spectra recorded in CD_2Cl_2 for a 1.0% w/w dispersion of P(LMA₅₀*stat*-GlyMA₉)-PMMA₆₇ nanoparticles initially (black spectrum) and then after heating the same dispersion to 110 °C for 17 h (orange spectrum; note the loss of epoxy signals within the shaded blue region). (b) THF GPC curve recorded for the diblock copolymer chains obtained after this heating protocol.

Figure S11. ¹H NMR spectra recorded in CD₂Cl₂ for PLMA₆₃-PGlyMA₈₉ diblock copolymer (black spectrum), the same copolymer after heating a 20% w/w copolymer dispersion in mineral oil for 17 h at 40 °C (blue spectrum), 70 °C (red spectrum) or 90 °C (green spectrum), respectively. In each case, the % loss of the original epoxy groups (Y%) was determined by comparing the aliphatic copolymer backbone at 0.30-2.30 ppm (see signal *b*) to the methine signal *a* corresponding to the epoxy ring at 3.20-3.33 ppm.

Figure S12. FT-IR spectra recorded for PLMA₆₃-PGlyMA₈₉ diblock copolymer (green spectrum) and the same copolymer (pink spectrum) after heating to 110 °C for 17 h in the presence of water.

(a) Carboxylic acid-epoxy addition

Scheme S1. Possible side-reactions that might occur when reacting PLMA₆₃-PGlyMA₈₉ nanoparticles with 50% v/v aqueous acetic acid: (a) epoxy ring-opening with acetic acid and (b) esterification between acetic acid and the pendent hydroxyl groups.