Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting for

Synthesis and properties of ABA-triblock copolymers from polyester A-blocks and easily degradable polyacetal B-blocks

Karolina Cichoń, Bartłomiej Kost*, Malgorzata Basko*

Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland

Mail: <u>baskomeg@cbmm.lodz.pl</u>, <u>kost@cbmm.lodz.pl</u>

Table of contents:
Molar weight calculation
Assay of Sulphur content
Table S1. Conditions of mineralization
Table S2. The diffusion coefficient for signals belonging to the PDXL7000 and PLA7500-PDXL7000-PLA7500 block copolymer
Table S3. Thermal properties of selected ABA copolymers (the second heating cycle at a rate of 10 °C/min in a DSC analysis)
Figure S1. MALDI TOF of purified PDXL ₂₄₀₀
Figure S2. The ¹ H and ¹³ C NMR spectra (400 MHz, CDCl ₃) of purified PDXL ₇₀₀₀
Figure S3. ¹ H NMR spectrum, and 2D HSQC NMR (400 MHz, DMSO-d ₆) of PDXL ₂₄₀₀ diol
Figure S4. SEC trace of polyacetal macroinitiator HO-PDXL ₇₀₀₀ -OH and prepared purified PCL-PDXL ₇₀₀₀ -PCL copolymers
Figure S5. The SEC traces of crude and purified a) PLA-PDXL ₇₀₀₀ -PLA copolymer and b) PCL-PDXL ₇₀₀₀ -PCL copolymer
Figure S6. SEC curves of polyacetal macroinitiator HO-PDXL ₂₄₀₀ -OH and resulting purified PLA-PDXL ₂₄₀₀ -PLA copolymers
Figure S7. The ¹ H and ¹³ C NMR spectra (400 MHz, CDCl ₃) of purified PCL-PDXL ₇₀₀₀ -PCL copolymer
Figure S8. Assessment of mean static contact angles of PCL-PDXL ₇₀₀₀ -PCL block copolymers in comparison to pure PDXL ₇₀₀₀ and PCL ₁₄₀₀₀
Figure S9. The ¹ H NMR of the films for the WCA measurements (CDCl ₃ , 400 MHz)

Figure S11. Acid induced degradation of PLA-PDXL7000-PLA copolymer followed by ¹ H NMR	
spectra([acetal units]:[H ⁺] = 10:1), (CD ₃ CN, 400 MHz)14	-
Figure S12 The GC spectra of acid induced degradation of PLA-PDXL ₂₀₀₀ -PLA after	•

Figure S12. The GC spectra of acid induced degradation of PLA-PDXL₇₀₀₀-PLA after 122h.....15

Molecular weight calculation

Assay of Sulphur content

0.2 g of copolymers were placed into glass vessels, then 65% nitric acid (3 mL) and 36% hydrochloric acid (1 mL) spectrally pure were added. Samples were pre-mineralized at 25 $^{\circ}$ C within 25 min. by using an ultrasonic bath. Then, the samples were mineralized in the UltraWave closed microwave system in two steps, as presented in the Table 1.

Table S1. Conditions of mineralization

Step	Time [min.]	T1 [⁰ C]	T2 [⁰ C]	Pressure [Ba]	Power [W]
1	25	240	70	110	1500
2	10	240	70	110	1500

After mineralization, the samples were transferred to 25 mL volumetric flasks and filled with deionized water and characterized. The Sulphur content was determined to be 932 ppm.

Table S2. The diffusion coefficient for signals belonging to the PDXL₇₀₀₀ and PLA₇₅₀₀-PDXL₇₀₀₀-PLA₇₅₀₀ block copolymer

PDXL ₇₀₀₀				
Signal [ppm]	Difusion coefficiency			
4.75	1.26.10-6			
3.70	1.26.10-6			
PLA ₁₀₀₀₀				
5.17	1.32.10-6			
1.60	1.34.10-6			
PLA ₇₅₀	PLA7500-PDXL7000-PLA7500			
5.12	9.95·10 ⁻⁷			
4.75	1.02.10-6			
4.40-4.28	1.02.10-6			
3.70	9.99·10 ⁻⁷			
1.60	1.01.10-6			

TableS3.ThermalABA copolymers (the

properties of selected

second heating cycle at a rate of	10 °C/min	in a DSC	analysis)

Copolymer	Ester content	DSC				TGA	
	mol %	<i>T</i> _g [°C]	T _m PDXL [°C]	T _m polyester [°C]	$\Delta H_{\rm m}$ [J/g]	<i>T</i> ₁ [°C]	<i>T</i> ₂ [°C]
PLA-PDXL ₇₀₀₀ -PLA 1	26	-41				227	308
PLA-PDXL ₇₀₀₀ -PLA 2	35	-26				229	299
PLA-PDXL ₇₀₀₀ -PLA 3	44	-13		123	12.78	239	298
PLA-PDXL ₇₀₀₀ -PLA 4	53	3		145	23.51	239	308
PLA-PDXL ₇₀₀₀ -PLA 5	60	3		150	27.24	243	324
PCL-PDXL ₇₀₀₀ -PCL 1	42	-63	31	53	68.34	305	355
PCL-PDXL ₇₀₀₀ -PCL 2	65	-65	24	51	62.74	302	371

 $T_{\rm g}$, $T_{\rm m}$ - temperature of glass transition and melting

 $\Delta H_{\rm m}$ - polyester enthalpy of melting

 T_1, T_2 - temperature of the maximum decomposition

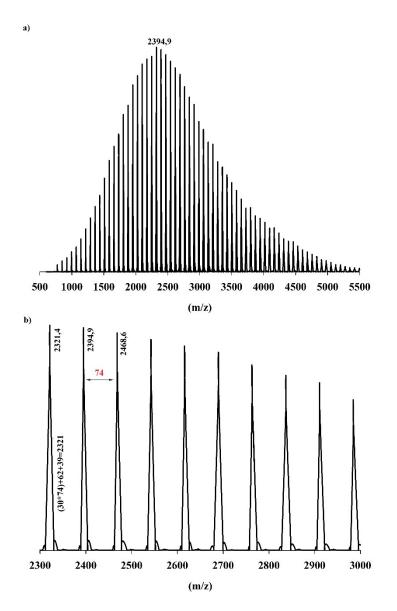


Figure S1. MALDI TOF of purified PDXL (M_{nNMR} = 2400 g/mol)

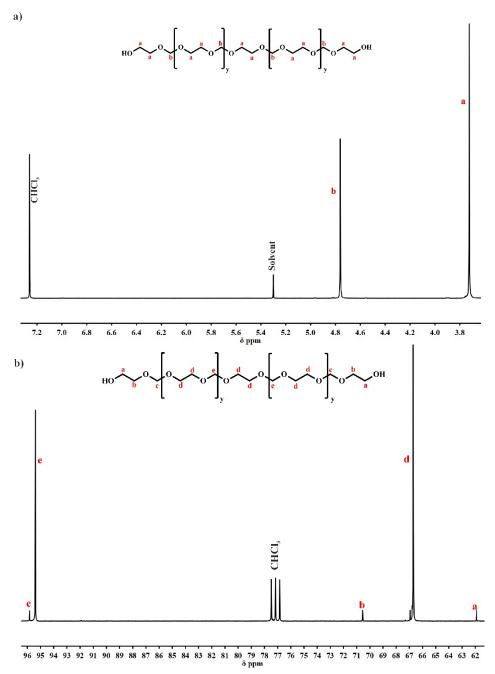
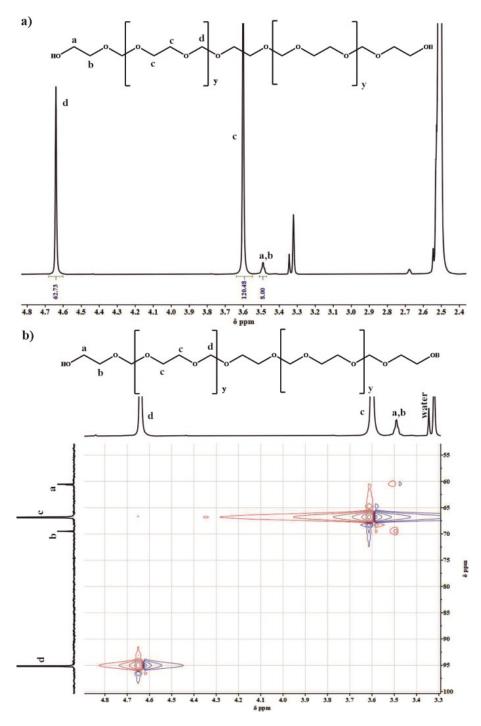
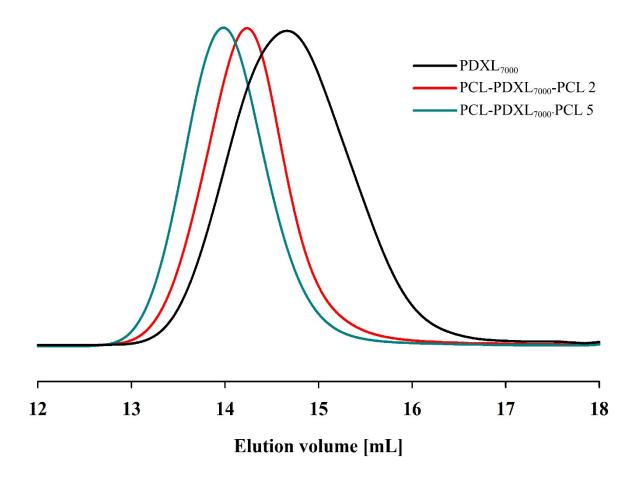
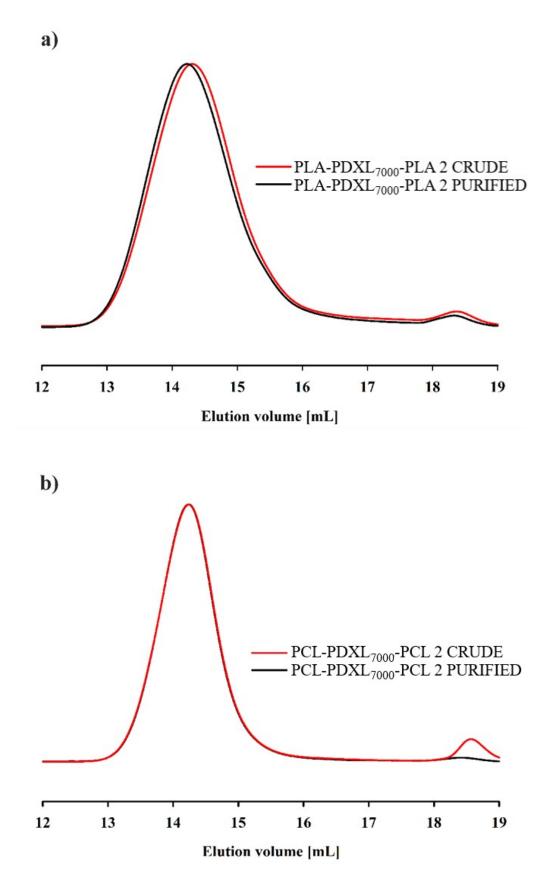


Figure S2. The ¹H and ¹³C NMR spectra (400 MHz, CDCl₃) of purified PDXL₇₀₀₀

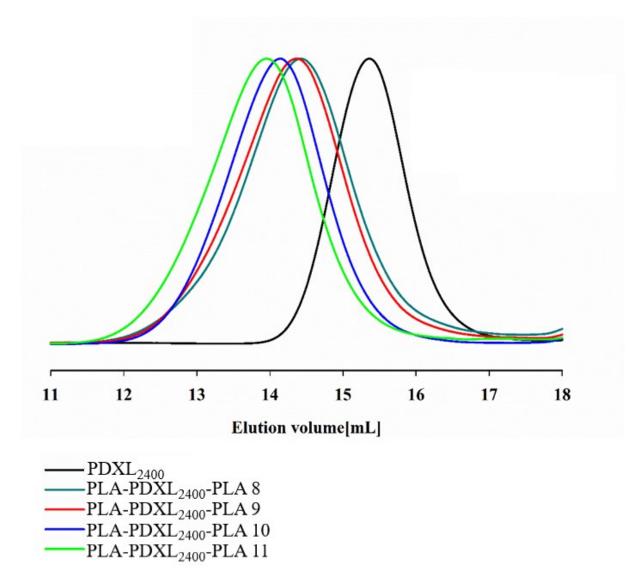

Figure S3. ¹H NMR spectrum, and 2D HSQC NMR (400 MHz, DMSO-d₆) of PDXL₂₄₀₀ diol

Figure S4. SEC trace of polyacetal macroinitiator HO-PDXL₇₀₀₀-OH and prepared purified PCL-PDXL₇₀₀₀-PCL copolymers

Figure S5. The SEC traces of crude and purified a) PLA-PDXL₇₀₀₀-PLA copolymer and b) PCL-PDXL₇₀₀₀-PCL copolymer

Figure S6. SEC curves of polyacetal macroinitiator HO-PDXL₂₄₀₀-OH and resulting purified PLA-PDXL₂₄₀₀-PLA copolymers.



Figure S7. The ¹H and ¹³C NMR spectra (400 MHz, CDCl₃) of purified PCL-PDXL₇₀₀₀-PCL copolymer.

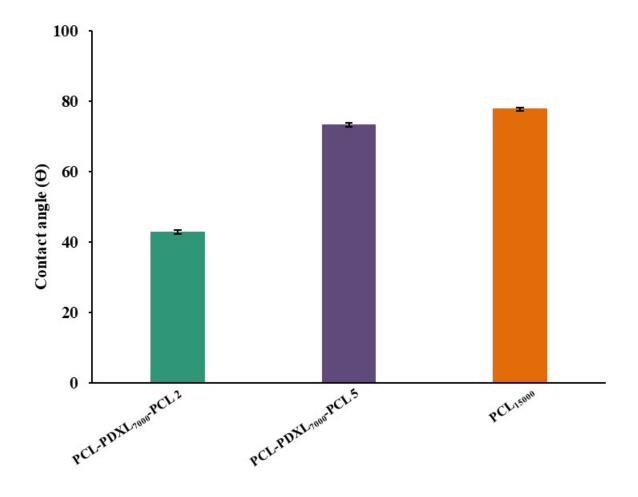


Figure S8. Assessment of mean static contact angles of PCL-PDXL₇₀₀₀-PCL block copolymers in comparison to pure $PDXL_{7000}$ and PCL_{14000} .

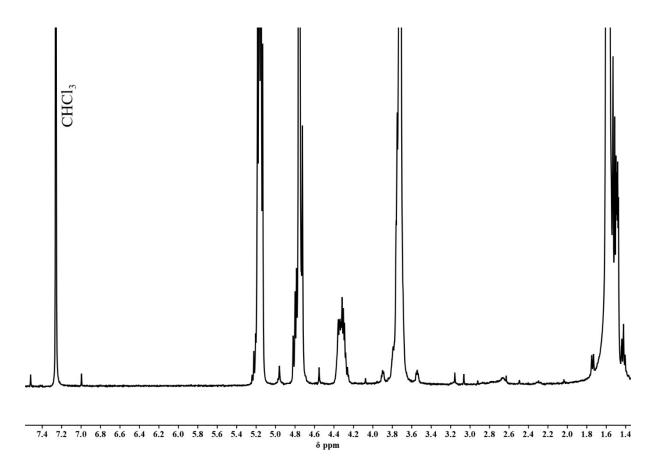
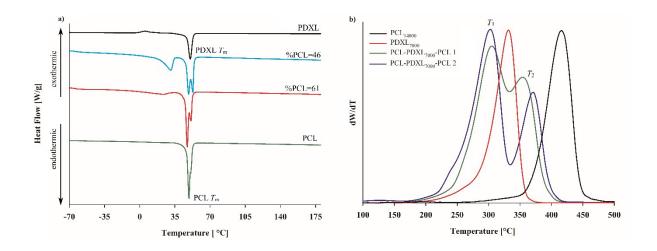
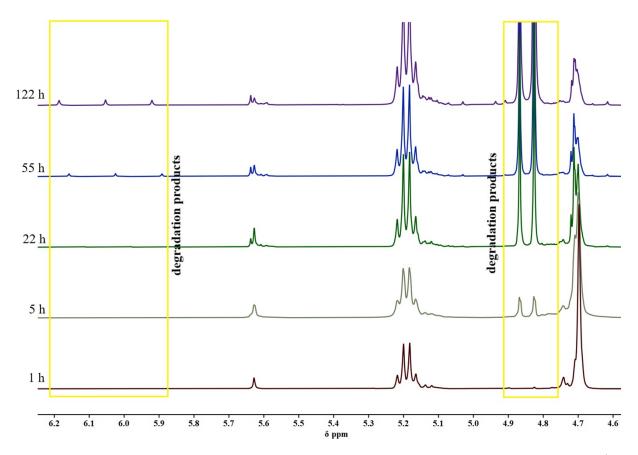




Figure S9. The ¹H NMR of the films for the WCA measurements (CDCl₃, 400 MHz)

Figure S10. a)The DSC thermograms registered during the second scan and b) TGA curves for starting HO-PDXL₇₀₀₀-OH diol, PCL₁₄₀₀₀, and PCL-PDXL₇₀₀₀-PCL. For DSC analysis samples were heated at 10 °C/min and cooled at 10 °C/min, whereas for TGA measurement samples were heated at 20 °C/min.

Figure S11. Acid induced degradation of PLA-PDXL₇₀₀₀-PLA copolymer followed by 1 H NMR spectra([acetal units]:[H⁺] = 10:1), (CD₃CN, 400 MHz).

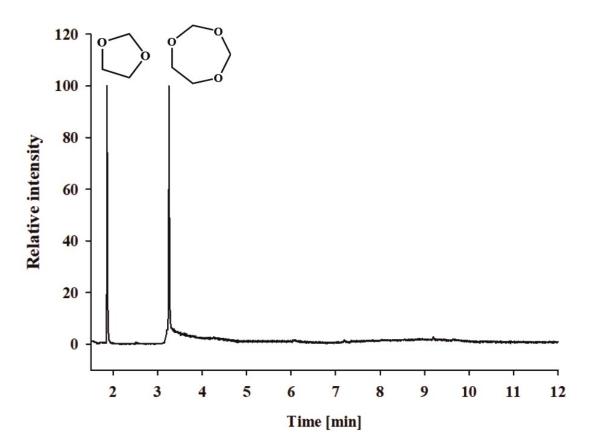


Figure S12. The GC spectra of acid induced degradation of PLA-PDXL₇₀₀₀-PLA after 122h