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Figure S1. Schematic representation of the initiator synthesis. (a) BOC-NH2-C2-Tos, 

(b) BOC-NH2-C3-Tos, (c) BOC-NH2-C3-Br, (d) phthalimide-NH2-C3-Tos, and (e) 

commercially available phthalimide-NH2-C3-Br.
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Figure S2. Characterization of BOC-NH2-C2-Tos. (a) 1H NMR (400 MHz, CDCl3) and 

(b) 13C NMR (400 MHz, CDCl3). 
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Figure S3. Characterization of BOC-NH2-C3-Tos. (a) 1H NMR (400 MHz, CDCl3) and 

(b) 13C NMR (400 MHz, CDCl3). 
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Figure S4. Characterization of phthalimide-NH2-C3-Tos. (a) 1H NMR (400 MHz, 

CDCl3) and (b) 13C NMR (400 MHz, CDCl3). 
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Figure S5. Characterization of BOC-NH2-C3-Br. (a) 1H NMR (400 MHz, CDCl3) and 

(b) 13C NMR (400 MHz, CDCl3).

Figure S6. 1H NMR (400 MHz, CDCl3) of phthalimide-NH2-C3-Br.
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Figure S7. Kinetic studies of the CROP of EtOx initiated by BOC-NH2-C2-Tos 

([M]/[I] = 15) in MeCN at 80 °C. 1H NMR spectra (400 MHz, CDCl3) of reaction 

mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer 

peaks (H1 and H2) and the increase of the resulting backbone signals (H1’ and H2’) 

over time. The signals with an apostrophe (Ha’) represent the deprotected tert-butyl 

protons (Ha) from the initiator and polymer. The CHCl3 (7.26 ppm) signals were used 

as a standard for chemical shift of overlayed spectra. 
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Figure S8. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) 

at indicated polymerization times of EtOx initiated by BOC-NH2-C2-Tos ([M]/[I] = 15) 

in MeCN at 80 °C.

S8



Figure S9. Kinetic studies of the CROP of EtOx initiated by BOC-NH2-C3-Tos 

([M]/[I] = 15) in MeCN at 80 °C. 1H NMR spectra (400 MHz, CDCl3) of reaction 

mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer 

peaks (H1 and H2) and the increase of the resulting backbone signals (H1’ and H2’) 

over time. The signals with an apostrophe (Ha’) represent the deprotected tert-butyl 

protons (Ha) from the initiator and polymer. The CHCl3 (7.26 ppm) signals were used 

as a standard for chemical shift of overlayed spectra. 
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Figure S10. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) 

at indicated polymerization times of EtOx initiated by BOC-NH2-C3-Tos ([M]/[I] = 15) 

in MeCN at 80 °C.
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Figure S11. Kinetic studies of the CROP of EtOx initiated by BOC-NH2-C3-Br 

([M]/[I] = 15) in MeCN at 80 °C. 1H NMR spectra (400 MHz, CDCl3) of reaction 

mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer 

peaks (H1 and H2) and the increase of the resulting backbone signals (H1’ and H2’) 

over time. 

The signals with an apostrophe (Ha’) represent the deprotected tert-butyl protons (Ha) 

from the initiator and polymer. The CHCl3 (7.26 ppm) signals were used as a standard 

for chemical shift of overlayed spectra. 
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Figure S12. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) 

at indicated polymerization times of EtOx initiated by BOC-NH2-C3-Br ([M]/[I] = 15) in 

MeCN at 80 °C.
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Figure S13. Kinetic studies of the CROP of EtOx initiated by phthalimide-NH2-C3-Br 

([M]/[I] = 15) in MeCN at 80 °C. 1H NMR spectra (400 MHz, CDCl3) of reaction 

mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer 

peaks (H1 and H2) and the increase of the resulting backbone signals (H1’ and H2’) 

over time. The CHCl3 (7.26 ppm) signals were used as a standard for chemical shift of 

overlayed spectra
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Figure S14. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) 

at indicated polymerization times of EtOx initiated by phthalimide-NH2-C3-Br ([M]/[I] 

= 15) in MeCN at 80 °C.
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Figure S15. Kinetic studies of the CROP of EtOx initiated by phthalimide-NH2-C3-

Tos ([M]/[I] = 15) in MeCN at 80 °C. 1H NMR spectra (400 MHz, CDCl3) of reaction 

mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer 

peaks (H1 and H2) and the increase of the resulting backbone signals (H1’ and H2’) 

over time. The CHCl3 (7.26 ppm) signals were used as a standard for chemical shift of 

overlayed spectra.

S15



Figure S16. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) 

at indicated polymerization times of EtOx initiated by phthalimide-NH2-C3-Tos ([M]/[I] 

= 15) in MeCN at 80 °C.
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Figure S17. Monomer conversion versus polymerization time for different initiators 

concentrations of the CROP of EtOx ([M]/[I] = 15) in MeCN at 80 °C. 
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Figure S18. 1H NMR spectrum of BOC-NH2-C3-Tos after 2 h of incubation at 80 °C 

in MeCN (400 MHz, CDCl3). 

Figure S19. Kinetic studies of EtOx initiated with phthalimide-NH2-C3-Br ([M]/[I] = 

15) in MeCN at 140 °C. 1H NMR spectra (400 MHz, CDCl3) of reaction mixtures at 

indicated reaction times showing the reduction of the 2-oxazoline monomer peaks (H1 
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and H2) and the increase of the resulting backbone signals (H1’ and H2’) over time. 

The CHCl3 (7.26 ppm) signals were used as a standard for chemical shift of overlayed 

spectra.

Figure S20. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) 

at indicated polymerization times of EtOx initiated by phthalimide-NH2-C3-Br ([M]/[I] 

= 15) in MeCN at 140 °C.
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Figure 21. Kinetic studies of EtOx initiated phthalimide-NH2-C3-Tos ([M]/[I] = 15) in 

MeCN at 140 °C. 1H NMR spectra (400 MHz, CDCl3) of reaction mixtures at indicated 

reaction times showing the reduction of the 2-oxazoline monomer peaks (H1 and H2) 

and the increase of the resulting backbone signals (H1’ and H2’) over time. CHCl3 (7.26 

ppm) signals were used as a standard for chemical shift of overlayed spectra. 
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Figure S22. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) 

at indicated polymerization times of EtOx initiated by phthalimide-NH2-C3-Tos ([M]/[I] 

= 15) in MeCN at 140 °C.
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Figure S23. Evolution of the initiator consumption with polymerization time of the 

kinetic studies for cationic ring-opening polymerization of EtOx in MeCN using 

phthalimide-NH2-C3-Tos at ([M]/[I] = 15; T = 140 °C, [M] = 2 M) evaluated by 1H 

NMR measurements. 
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Figure S24. Summary of the theoretical molar mass (Mn,th) determined by conversion 

and the initial [M]/[I] = 15 in MeCN at 80 °C using 1H NMR and the molar mass (Mn, exp) 

determined by the theoretical molar mass and initiator consumption originating from 
1H NMR of PEtOx initiated by phthalimide-NH2-C3-Tos.
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Figure S25. Molar mass distribution traces obtained from SEC measurements (DMAc, 

PS-cal.) of α-phthalimide, ω-hydroxy PEtOx and α-methyl, ω-phthalimide PEtOx.
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Figure S26. Molar mass distribution traces obtained from SEC measurements (DMAc, 

PS-cal.) of the telechelic PEtOx polymers. 
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Figure S27. (a) 1H NMR spectra of phthalimide α and ω functionalized PEtOx (400 

MHz, CDCl3), before (top - blue) and after deprotection (bottom - black). (b) Molar 

mass distribution traces obtained from SEC measurements (DMAc, PS-cal.) before 

(dashed blue line) and after deprotection (solid black line) of the phthalimide. 
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