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Figure S1. Schematic representation of the initiator synthesis. (a) BOC-NH,-C2-Tos,
(b) BOC-NH,-C3-Tos, (¢) BOC-NH,-C3-Br, (d) phthalimide-NH,-C3-Tos, and (e)
commercially available phthalimide-NH,-C3-Br.

S2



a)
CHCI,
e
& f d
d e/ e & SN0 2 b
‘J d ¢o 7 :[Jr \ﬂa j H,O
a c
JJ NH A J| bu__
a
o @
b a
Ho\/\NJLOJ< b
¢ H a
CHCl,
4 |
1 v 1 1 1 1 1 1 1
8 7 6 5 4 3 2 1
6 [ppm]
b) :
10.9 7 .
8( l v 5 H
7 Gdls\o/\/N%roz 1
4 o 1
7 1 !
8 cocl,
P/
Iy
10
6 9
3 2 5 4
| ] ] |
1

1é0l -150. .1:10. .1:;:0. .150. .1‘;0. .160. .9I0. .8I0 l l7l0. .GIO. .SIO. .40. .3I0. .2I0. .1I0. l (I)
6 [ppm]
Figure S2. Characterization of BOC-NH,-C2-Tos. (a) '"H NMR (400 MHz, CDCls) and
(b) 3C NMR (400 MHz, CDCls).
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Figure S3. Characterization of BOC-NH,-C3-Tos. (a) 'HNMR (400 MHz, CDCl;) and
(b) 3C NMR (400 MHz, CDCls).
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Figure S4. Characterization of phthalimide-NH,-C3-Tos. (a) 'H NMR (400 MHz,
CDCls) and (b) 3C NMR (400 MHz, CDCly).
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Figure S5. Characterization of BOC-NH,-C3-Br. (a) 'TH NMR (400 MHz, CDCls) and
(b) 3C NMR (400 MHz, CDCls).
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Figure S6. 'H NMR (400 MHz, CDCls) of phthalimide-NH,-C3-Br.
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Figure S7. Kinetic studies of the CROP of EtOx initiated by BOC-NH,-C2-Tos
(IMJ/[1] = 15) in MeCN at 80 °C. 'H NMR spectra (400 MHz, CDCls) of reaction
mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer
peaks (H1 and H2) and the increase of the resulting backbone signals (H1’ and H2’)
over time. The signals with an apostrophe (Ha’) represent the deprotected fert-butyl
protons (Ha) from the initiator and polymer. The CHCIl; (7.26 ppm) signals were used

as a standard for chemical shift of overlayed spectra.
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Figure S8. Evolution of the molar mass determined by SEC (DMAc, PS-calibration)
at indicated polymerization times of EtOx initiated by BOC-NH,-C2-Tos ([M]/[1] = 15)
in MeCN at 80 °C.
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Figure S9. Kinetic studies of the CROP of EtOx initiated by BOC-NH,-C3-Tos
(IMY/[1] = 15) in MeCN at 80 °C. 'H NMR spectra (400 MHz, CDC]l;) of reaction

mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer

peaks (H1 and H2) and the increase of the resulting backbone signals (H1’ and H2’)

over time. The signals with an apostrophe (Ha’) represent the deprotected fert-butyl

protons (Ha) from the initiator and polymer. The CHCI; (7.26 ppm) signals were used

as a standard for chemical shift of overlayed spectra.
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Figure S10. Evolution of the molar mass determined by SEC (DMAc, PS-calibration)
at indicated polymerization times of EtOx initiated by BOC-NH,-C3-Tos ([M]/[1] = 15)
in MeCN at 80 °C.
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Figure S11. Kinetic studies of the CROP of EtOx initiated by BOC-NH,-C3-Br
(IMJ/[1] = 15) in MeCN at 80 °C. 'H NMR spectra (400 MHz, CDCls) of reaction
mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer
peaks (H1 and H2) and the increase of the resulting backbone signals (H1’ and H2’)
over time.

The signals with an apostrophe (Ha’) represent the deprotected tert-butyl protons (Ha)
from the initiator and polymer. The CHCIl; (7.26 ppm) signals were used as a standard

for chemical shift of overlayed spectra.

S11



— 300 min

1201 Initiat — 240 min
= 100- nitiator —_ 180 min
g 804 — 120 min
N . .
'TT: 60- 60 m!n
§ 40- — 30 m!n
Z° 10 min

20 .
0 min
0_
100 1000 10000 100000

M, [g mol™]

Figure S12. Evolution of the molar mass determined by SEC (DMAc, PS-calibration)
at indicated polymerization times of EtOx initiated by BOC-NH,-C3-Br ([IM}/[I] = 15) in
MeCN at 80 °C.
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Figure S13. Kinetic studies of the CROP of EtOx initiated by phthalimide-NH,-C3-Br
(IMJ/[1] = 15) in MeCN at 80 °C. 'H NMR spectra (400 MHz, CDCls) of reaction
mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer
peaks (H1 and H2) and the increase of the resulting backbone signals (H1’ and H2’)
over time. The CHCI; (7.26 ppm) signals were used as a standard for chemical shift of

overlayed spectra
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Figure S14. Evolution of the molar mass determined by SEC (DMAc, PS-calibration)
at indicated polymerization times of EtOx initiated by phthalimide-NH,-C3-Br ([M]/[1]
=15) in MeCN at 80 °C.
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Figure S15. Kinetic studies of the CROP of EtOx initiated by phthalimide-NH,-C3-
Tos ([M]/[1] = 15) in MeCN at 80 °C. '"H NMR spectra (400 MHz, CDC]l;) of reaction
mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer
peaks (H1 and H2) and the increase of the resulting backbone signals (H1’ and H2’)
over time. The CHCI; (7.26 ppm) signals were used as a standard for chemical shift of

overlayed spectra.
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Figure S16. Evolution of the molar mass determined by SEC (DMAc, PS-calibration)

at indicated polymerization times of EtOx initiated by phthalimide-NH,-C3-Tos ([M]/[1]
=15) in MeCN at 80 °C.
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Figure S17. Monomer conversion versus polymerization time for different initiators

concentrations of the CROP of EtOx ([M]/[I] = 15) in MeCN at 80 °C.
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Figure S18. 'H NMR spectrum of BOC-NH,-C3-Tos after 2 h of incubation at 80 °C

in MeCN (400 MHz, CDCl,).
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Figure S19. Kinetic studies of EtOx initiated with phthalimide-NH,-C3-Br ([M]/[1] =
15) in MeCN at 140 °C. 'H NMR spectra (400 MHz, CDCI;) of reaction mixtures at

indicated reaction times showing the reduction of the 2-oxazoline monomer peaks (H1
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and H2) and the increase of the resulting backbone signals (H1’ and H2’) over time.
The CHCl; (7.26 ppm) signals were used as a standard for chemical shift of overlayed

spectra.
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Figure S20. Evolution of the molar mass determined by SEC (DMAc, PS-calibration)
at indicated polymerization times of EtOx initiated by phthalimide-NH,-C3-Br ((M]/[1]
= 15) in MeCN at 140 °C.
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Figure 21. Kinetic studies of EtOx initiated phthalimide-NH,-C3-Tos ([M]/[I] = 15) in
MeCN at 140 °C. 'H NMR spectra (400 MHz, CDCl;) of reaction mixtures at indicated
reaction times showing the reduction of the 2-oxazoline monomer peaks (H1 and H2)
and the increase of the resulting backbone signals (H1” and H2”) over time. CHCl; (7.26

ppm) signals were used as a standard for chemical shift of overlayed spectra.
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Figure S22. Evolution of the molar mass determined by SEC (DMAc, PS-calibration)

at indicated polymerization times of EtOx initiated by phthalimide-NH,-C3-Tos ([M]/[1]

=15) in MeCN at 140 °C.
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Figure S23. Evolution of the initiator consumption with polymerization time of the

kinetic studies for cationic ring-opening polymerization of EtOx in MeCN using

phthalimide-NH,-C3-Tos at ([M]/[I] = 15; T = 140 °C, [M] = 2 M) evaluated by 'H

NMR measurements.
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Figure S24. Summary of the theoretical molar mass (M, ) determined by conversion
and the initial [M]/[I] = 15 in MeCN at 80 °C using '"H NMR and the molar mass (M, exp)
determined by the theoretical molar mass and initiator consumption originating from

"H NMR of PEtOXx initiated by phthalimide-NH,-C3-Tos.
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Figure S25. Molar mass distribution traces obtained from SEC measurements (DMAc,

PS-cal.) of a-phthalimide, m-hydroxy PEtOx and a-methyl, ®-phthalimide PEtOx.
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Figure S26. Molar mass distribution traces obtained from SEC measurements (DMAc,
PS-cal.) of the telechelic PEtOx polymers.
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Figure S27. (a) 'H NMR spectra of phthalimide o and ® functionalized PEtOx (400
MHz, CDCl,), before (top - blue) and after deprotection (bottom - black). (b) Molar
mass distribution traces obtained from SEC measurements (DMAc, PS-cal.) before

(dashed blue line) and after deprotection (solid black line) of the phthalimide.
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