Supporting Information

Protected amine-functional initiators for the synthesis of α -amine homo- and heterotelechelic poly(2-ethyl-2-oxazoline)s

Zihnil A. I. Mazrad,^{a,#} May Lai,^{a,#} Thomas P. Davis,^b Joseph A. Nicolazzo,^a Kristofer J. Thurecht^{b,c} Meike N. Leiske,^a[†]Kristian Kempe^{a,d*}

^aDrug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
^bAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
^cCentre for Advanced Imaging, The University of Queensland, Australia
^dMaterials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
[†]Current address: Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Ghent, Belgium

Authors contributed equally*Correspondence to kristian.kempe@monash.edu

Figure S1. Schematic representation of the initiator synthesis. (a) BOC-NH₂-C2-Tos, (b) BOC-NH₂-C3-Tos, (c) BOC-NH₂-C3-Br, (d) phthalimide-NH₂-C3-Tos, and (e) commercially available phthalimide-NH₂-C3-Br.

Figure S2. Characterization of BOC-NH₂-C2-Tos. (a) ¹H NMR (400 MHz, CDCl₃) and (b) ¹³C NMR (400 MHz, CDCl₃).

Figure S3. Characterization of BOC-NH₂-C3-Tos. (a) ¹H NMR (400 MHz, CDCl₃) and (b) ¹³C NMR (400 MHz, CDCl₃).

Figure S4. Characterization of phthalimide- NH_2 -C3-Tos. (a) ¹H NMR (400 MHz, CDCl₃) and (b) ¹³C NMR (400 MHz, CDCl₃).

Figure S5. Characterization of BOC-NH₂-C3-Br. (a) ¹H NMR (400 MHz, CDCl₃) and (b) ¹³C NMR (400 MHz, CDCl₃).

Figure S6. ¹H NMR (400 MHz, CDCl₃) of phthalimide-NH₂-C3-Br.

Figure S7. Kinetic studies of the CROP of EtOx initiated by BOC-NH₂-C2-Tos ([M]/[I] = 15) in MeCN at 80 °C. ¹H NMR spectra (400 MHz, CDCl₃) of reaction mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer peaks (H1 and H2) and the increase of the resulting backbone signals (H1' and H2') over time. The signals with an apostrophe (Ha') represent the deprotected *tert*-butyl protons (Ha) from the initiator and polymer. The CHCl₃ (7.26 ppm) signals were used as a standard for chemical shift of overlayed spectra.

Figure S8. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) at indicated polymerization times of EtOx initiated by BOC-NH₂-C2-Tos ([M]/[I] = 15) in MeCN at 80 °C.

Figure S9. Kinetic studies of the CROP of EtOx initiated by BOC-NH₂-C3-Tos ([M]/[I] = 15) in MeCN at 80 °C. ¹H NMR spectra (400 MHz, CDCl₃) of reaction mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer peaks (H1 and H2) and the increase of the resulting backbone signals (H1' and H2') over time. The signals with an apostrophe (Ha') represent the deprotected *tert*-butyl protons (Ha) from the initiator and polymer. The CHCl₃ (7.26 ppm) signals were used as a standard for chemical shift of overlayed spectra.

Figure S10. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) at indicated polymerization times of EtOx initiated by BOC-NH₂-C3-Tos ([M]/[I] = 15) in MeCN at 80 °C.

Figure S11. Kinetic studies of the CROP of EtOx initiated by BOC-NH₂-C3-Br ([M]/[I] = 15) in MeCN at 80 °C. ¹H NMR spectra (400 MHz, CDCl₃) of reaction mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer peaks (H1 and H2) and the increase of the resulting backbone signals (H1' and H2') over time.

The signals with an apostrophe (Ha') represent the deprotected *tert*-butyl protons (Ha) from the initiator and polymer. The CHCl₃ (7.26 ppm) signals were used as a standard for chemical shift of overlayed spectra.

Figure S12. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) at indicated polymerization times of EtOx initiated by BOC-NH₂-C3-Br ([M]/[I] = 15) in MeCN at 80 °C.

Figure S13. Kinetic studies of the CROP of EtOx initiated by phthalimide- NH_2 -C3-Br ([M]/[I] = 15) in MeCN at 80 °C. ¹H NMR spectra (400 MHz, CDCl₃) of reaction mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer peaks (H1 and H2) and the increase of the resulting backbone signals (H1' and H2') over time. The CHCl₃ (7.26 ppm) signals were used as a standard for chemical shift of overlayed spectra

Figure S14. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) at indicated polymerization times of EtOx initiated by phthalimide- NH_2 -C3-Br ([M]/[I] = 15) in MeCN at 80 °C.

Figure S15. Kinetic studies of the CROP of EtOx initiated by phthalimide- NH_2 -C3-Tos ([M]/[I] = 15) in MeCN at 80 °C. ¹H NMR spectra (400 MHz, CDCl₃) of reaction mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer peaks (H1 and H2) and the increase of the resulting backbone signals (H1' and H2') over time. The CHCl₃ (7.26 ppm) signals were used as a standard for chemical shift of overlayed spectra.

Figure S16. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) at indicated polymerization times of EtOx initiated by phthalimide- NH_2 -C3-Tos ([M]/[I] = 15) in MeCN at 80 °C.

Figure S17. Monomer conversion versus polymerization time for different initiators concentrations of the CROP of EtOx ([M]/[I] = 15) in MeCN at 80 °C.

Figure S18. ¹H NMR spectrum of BOC-NH₂-C3-Tos after 2 h of incubation at 80 °C in MeCN (400 MHz, CDCl₃).

Figure S19. Kinetic studies of EtOx initiated with phthalimide- NH_2 -C3-Br ([M]/[I] = 15) in MeCN at 140 °C. ¹H NMR spectra (400 MHz, CDCl₃) of reaction mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer peaks (H1

and H2) and the increase of the resulting backbone signals (H1' and H2') over time. The CHCl₃ (7.26 ppm) signals were used as a standard for chemical shift of overlayed spectra.

Figure S20. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) at indicated polymerization times of EtOx initiated by phthalimide-NH₂-C3-Br ([M]/[I] = 15) in MeCN at 140 °C.

Figure 21. Kinetic studies of EtOx initiated phthalimide-NH₂-C3-Tos ([M]/[I] = 15) in MeCN at 140 °C. ¹H NMR spectra (400 MHz, CDCl₃) of reaction mixtures at indicated reaction times showing the reduction of the 2-oxazoline monomer peaks (H1 and H2) and the increase of the resulting backbone signals (H1' and H2') over time. CHCl₃ (7.26 ppm) signals were used as a standard for chemical shift of overlayed spectra.

Figure S22. Evolution of the molar mass determined by SEC (DMAc, PS-calibration) at indicated polymerization times of EtOx initiated by phthalimide- NH_2 -C3-Tos ([M]/[I] = 15) in MeCN at 140 °C.

Figure S23. Evolution of the initiator consumption with polymerization time of the kinetic studies for cationic ring-opening polymerization of EtOx in MeCN using phthalimide-NH₂-C3-Tos at ([M]/[I] = 15; T = 140 °C, [M] = 2 M) evaluated by ¹H NMR measurements.

Figure S24. Summary of the theoretical molar mass $(M_{n,th})$ determined by conversion and the initial [M]/[I] = 15 in MeCN at 80 °C using ¹H NMR and the molar mass $(M_{n, exp})$ determined by the theoretical molar mass and initiator consumption originating from ¹H NMR of PEtOx initiated by phthalimide-NH₂-C3-Tos.

Figure S25. Molar mass distribution traces obtained from SEC measurements (DMAc, PS-cal.) of α -phthalimide, ω -hydroxy PEtOx and α -methyl, ω -phthalimide PEtOx.

Figure S26. Molar mass distribution traces obtained from SEC measurements (DMAc, PS-cal.) of the telechelic PEtOx polymers.

Figure S27. (a) ¹H NMR spectra of phthalimide α and ω functionalized PEtOx (400 MHz, CDCl₃), before (top - blue) and after deprotection (bottom - black). (b) Molar mass distribution traces obtained from SEC measurements (DMAc, PS-cal.) before (dashed blue line) and after deprotection (solid black line) of the phthalimide.