Supporting Information

Exploration of modification-induced selfassembly (MISA) technique and the preparation of nano-objects with functional poly(acrylic acid) core

Peng Zhou, Boyang Shi, Yuang Liu, Penghan Li, and Guowei Wang*

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Fig. S1 ¹H NMR spectrum for CTA-1 (in CDCl₃ solvent).

Fig. S2 ¹H NMR spectrum for CTA-2 (in CDCl₃ solvent).

Fig. S3 ¹H NMR spectrum for CTA-3 (in CDCl₃ solvent).

Fig. S4 ¹H NMR spectra for macroinitiator PS-CTA-1 and PS-b-PtBA (in CDCl₃ solvent).

Fig. S5 ¹H NMR spectra for nano-objects in (A) CD₃OD solvent, and (B) C_6D_6 solvent from PS-*b*-PAA.

Fig. S6 ¹H NMR spectra for macroinitiator P*t*BA-CTA-2 and P*t*BA-*b*-PS-*b*-P*t*BA (in CDCl₃ solvent).

Fig. S7 ¹H NMR spectra for macroinitiator Star-PtBA₄ and Star-(PtBA-b-PS)₄ (in CDCl₃ solvent).

Fig. S8 TEM images of nano-objects formed in MISA process from PS_{52} -*b*-P*t*BA₆₇ with different weight solids content. (a, b) spherical nano-objects.

Fig. S9 TEM images of nano-objects formed in MISA process from PS_{52} -*b*-P*t*BA₃₉₂ with different weight solids content. (a, b, c) vesicular nano-objects.

Fig. S10 (a) ¹H NMR for the purified and hydrolyzed block copolymers PS_{52} -*b*-P*t*BA₃₁₃ at different time (in DMSO-d₆ solvent), (b) the relationship between the degree of hydrolysis and hydrolysis time.

Fig. S11 TEM images of nano-objects formed in MISA process from PS_{52} -*b*-*Pt*BA₃₁₃ with fixed weight solids content of 2.0 % w/w and varied stirring rate. (a) stirring rate was fixed as 600 rpm, (b) stirring rate was fixed as 250 rpm.