Electronic Supplementary Information

Synthesis and characterization of hydrophilic functionalized organosilicon copolymers

containing triazole and silylimidate/silylacrylate groups

Alexander S. Pozdnyakov,* Nadezhda P. Kuznetsova, Anastasia A. Ivanova, Yuliya I. Bolgova, Tatyana A. Semenova, Olga M. Trofimova and Artem I. Emel'yanov

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., Irkutsk, 664033, Russian Federation.

Table of Contents

1	Figure S1 Molecular weight distribution for poly(VT-co-BTMSI) P2	S 3
2	Figure S2 Molecular weight distribution for poly(VT-co-BTMSI) P4	S3
3	Figure S3 Molecular weight distribution for poly(VT-co-BTMSI) P5	S3
4	Figure S4 Molecular weight distribution for poly(VT-co-BTMSI) P6	S3
5	Figure S5 FT-IR spectra of poly(VT-co-BTMSI) P3 and P5	S4
6	Figure S6 FT-IR spectra of 1-vinyl-1,2,4-triazole (VT) and N,O-	
	bis(trimethylsilyl)prop-2-enecarboximidate (BTMSI)	S4
7	Figure S7 ¹ H NMR spectrum of copolymer P3	S5
8	Figure S8 ¹³ C NMR spectrum of copolymers P3	S5
9	Figure S9 ¹ H NMR spectrum of copolymer P4	S 6
10	Figure S10 ¹³ C NMR spectrum of copolymers P4	S 6
11	Figure S11 ¹ H NMR spectrum of copolymer P5	S 7
12	Figure S12 ¹³ C NMR spectrum of copolymers P5	S 7
13	Figure S13 ¹ H NMR spectrum of copolymer P6	S 8
14	Figure S14 ¹³ C NMR spectrum of copolymers P6	S 8
15	Figure S15 ¹ H NMR spectrum of copolymer MP2	S9
16	Figure S16 ²⁹ Si NMR spectrum of copolymer MP2	S9
17	Figure S17 ¹ H NMR spectrum of copolymer MP3	S10
18	Figure S18 ¹³ C NMR spectrum of copolymers MP3	S10
19	Figure S19 ²⁹ Si NMR spectrum of copolymer MP3	S11
20	Figure S20 ¹ H NMR spectrum of copolymer MP4	S11
21	Figure S21 ¹³ C NMR spectrum of copolymers MP4	S12
22	Figure S22 ²⁹ Si NMR spectrum of copolymer MP4	S12

23	Figure S23 ¹ H NMR spectrum of copolymer MP5	S13
24	Figure S24 ¹³ C NMR spectrum of copolymers MP5	S13
25	Figure S25 ¹ H NMR spectrum of copolymer MP6	S14
26	Figure S26 ¹³ C NMR spectrum of copolymers MP6	S14
27	Figure S27 SEM and EDX of poly(VT-co-BTMSI) P3 (various surface	S15
	regions)	
28	Table S1 Thermal stability of copolymers P2–P6	S15
29	Copolymerization constants	S15
30	Elemental analysis data of MP2–MP6 copolymers	S16

Fig. S1 Molecular weight distribution for poly(VT-co-BTMSI) P2.

Fig. S2 Molecular weight distribution for poly(VT-co-BTMSI) P4.

Fig. S3 Molecular weight distribution for poly(VT-co-BTMSI) P5.

Fig. S4 Molecular weight distribution for poly(VT-co-BTMSI) P6.

Fig. S5 FT-IR spectra of poly(VT-co-BTMSI) P3 and P5.

Fig. S6 FT-IR spectra of 1-vinyl-1,2,4-triazole (VT) and N,O-*bis*(trimethylsilyl)prop-2-enecarboximidate (BTMSI).

Fig. S7 ¹H NMR spectrum of copolymer P3 (400.13 MHz, DMSO- d_6).

Fig. S8 ¹³C NMR spectrum of copolymer P3 (100.62 MHz, DMSO- d_6).

Fig. S9 ¹H NMR spectrum of copolymer P4 (400.13 MHz, DMSO-*d*₆).

Fig. S10 ¹³C NMR spectrum of copolymer P4 (100.62 MHz, DMSO- d_6).

Fig. S11 ¹H NMR spectrum of copolymer P5 (400.13 MHz, DMSO- d_6).

Fig. S12 ¹³C NMR spectrum of copolymer P5 (100.62 MHz, DMSO- d_6).

Fig. S13 ¹H NMR spectrum of copolymer P6 (400.13 MHz, DMSO-*d*₆).

Fig. S14 ¹³C NMR spectrum of copolymer P6 (100.62 MHz, DMSO- d_6).

Fig. S15 ¹H NMR spectrum of copolymer MP2 (400.13 MHz, DMSO-*d*₆).

Fig. S16²⁹Si NMR spectrum of copolymer MP2 (79.50 MHz, DMSO-*d*₆).

Fig. S17 ¹H NMR spectrum of copolymer MP3 (400.13 MHz, DMSO- d_6).

Fig. S18 ¹³C NMR spectrum of copolymer MP3 (100.62 MHz, DMSO- d_6).

Fig. S19²⁹Si NMR spectrum of copolymer MP3 (79.50 MHz, DMSO-*d*₆).

Fig. S20 ¹H NMR spectrum of copolymer MP4 (400.13 MHz, DMSO-*d*₆).

Fig. S21 ¹³C NMR spectrum of copolymer MP4 (100.62 MHz, DMSO- d_6).

Fig. S22 ²⁹Si NMR spectrum of copolymer MP4 (79.50 MHz, DMSO-*d*₆).

Fig. S23 ¹H NMR spectrum of copolymer MP5 (400.13 MHz, DMSO- d_6).

Fig. S24 ¹³C NMR spectrum of copolymer MP5 (100.62 MHz, DMSO- d_6).

Fig. S25 ¹H NMR spectrum of copolymer MP6 (400.13 MHz, DMSO- d_6).

Fig. S26 ¹³C NMR spectrum of copolymer MP6 (100.62 MHz, DMSO- d_6).

Fig. S27 SEM and EDX of poly(VT-co-BTMSI) P3 (various surface regions).

Copolymer	Thermal stability, °C
P2	220
P3	230
P4	265
P5	290
P6	300

	Table S1.	Thermal	stability	of copo	lymers	P2-P6
--	-----------	---------	-----------	---------	--------	-------

Copolymerization constants

The following equation was used to determine the copolymerization constants:

$$\sqrt{kx} - \frac{1}{\sqrt{kx}} = r_1 \sqrt{\frac{x}{k}} - r_2 \sqrt{\frac{k}{x}}$$

where $x = [M_1]/[M_2]$, $k = [m_1][M_2]/[m_2][M_1]$; $[m_i]$, $[M_i]$ are concentrations of the component in the copolymer and in the initial monomer mixture.

Copolymerization constants have been determined up to 8% conversion.

Table S2. Calculation of copolymerization constants.

	1 7			
F10	F1C	fl	fm1	fm2
0.1	0.19	0.19174	-9.9343	-41.878
0.3	0.49	0.49337	-27.78	-28.526
0.5	0.66	0.66285	-37.171	-18.907
0.7	0.81	0.81201	-44.345	-10.266
0.9	0.93	0.9204	-46.157	-3.9919

The copolymerization constants are $r_{VT} = 1.361 \pm 0.078$ and $r_{BTMSI} = 0.273 \pm 0.029$.

Elemental analysis data of MP2–MP6 copolymers:

MP2 – Found, %: C 48.04; H 7.45; N 13.28; Si 14.62. **MP3** – Found, %: C 48.14; H 7.38; N 25.13; Si 7.85. **MP4** – Found, %: C 48.18; H 6.53; N 29.87; Si 6.42. **MP5** – Found, %: C 47.03; H 6.07; N 36.08; Si 2.18. **MP6** – Found, %: C 48.76; H 5.83; N 40.44; Si 0.83.