Supplementary Information

Facile synthesis of eight-membered cyclic(ester-amide)s and their organocatalytic ringopening polymerizations

Yu-Ting Guo, Wei Xiong, Changxia Shi, Fu-Sheng Du,* Zi-Chen Li*

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China.

Preparation and characterization of M1–M6

Phthalic anhydride (PA, 1 equiv) was dissolved in DMF (1 M), and the solution was cooled to 0 °C in an ice bath. β -Amino alcohol (1 equiv) was added into the above solution dropwise, and the mixture was stirred at room temperature for 10 min. After DMF was removed by evaporation, the remaining residue was used directly in next step.

Monomer precursor solution (1 equiv) was dissolved in anhydrous THF to achieve a concentration of ~0.04 M. Then, BOP reagent (1.1 equiv) and Et₃N (1.5 equiv) were added into the solution. The reaction was stirred at room temperature for 2 h. After THF was removed by evaporation, the remaining residue was dissolved in ethyl acetate. The solution was washed successively with 10% citric acid solutions, saturated NaHCO₃ solution, saturated saline solution, and H₂O. The organic phase was collected, dried with anhydrous MgSO₄, and concentrated to remove the solvent under reduced pressure. The crude product was further purified by silica gel chromatography. The melting temperature (T_m) of these monomers was measured by DSC.

M1: The crude compound was purified by silica gel chromatography (EtOAc/PE = 1/1, v/v) and recrystallized from ethyl acetate to afford M1 as a white solid. Yield: 56%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.70-7.60 (m, 2H), 7.56-7.46 (m, 2H), 4.20-3.98 (m, 2H), 3.82-3.64 (m, 2H), 3.48-3.34 (m, 1H), 2.15-2.01 (m, 1H), 1.96-1.71 (m, 3H); ¹³C NMR (101 MHz,

DMSO- d_6) δ 171.07, 167.34, 134.80, 131.89, 131.08, 129.71, 128.43, 127.77, 69.54, 56.80, 47.91, 32.55, 21.86; FT-MS (ESI, m/z): Calculated for C₁₃H₁₄NO₃ [(M+H)⁺]: 232.0965, found: 232.0968. T_m = 129.5 °C.

M2: The crude compound was purified by silica gel chromatography (DCM/PE /EtOAc = 3/3/1, v/v/v) to afford M2 as a white solid. Yield: 20%. ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.52 (m, 4H), 4.45-4.33 (m, 1H), 4.17-4.06 (m, 1H), 3.66 (m, J = 15.9, 9.5, 6.4 Hz, 1H), 3.30 (m, J = 15.4, 6.9, 3.4 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.52, 169.95, 135.77, 132.90, 130.28, 130.10, 129.54, 128.49, 64.67, 48.45, 34.76. FT-MS (ESI, m/z): Calculated for C₁₁H₁₂NO₃ [(M+H)⁺]: 206.0815, found: 206.0811. $T_m = 104.8$ °C.

M3: The crude compound was purified by silica gel chromatography (MeOH/DCM = 10/1, v/v) to afford **M3** as a white solid. Yield: 22%. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (m, 2H), 7.57-7.49 (m, 2H), 4.34 (m, 1H), 4.06 (m, 1H), 3.64 (m, *J* = 7.2, 4.0 Hz, 2H), 3.59-3.50 (m, 1H), 3.35 (m, 1H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.02, 169.82, 135.65, 132.52, 130.23, 130.10, 129.11, 128.12, 64.76, 46.00, 42.36, 13.16. FT-MS (ESI, *m/z*): Calculated for C₁₂H₁₄NO₃ [(*M*+H)⁺]: 220.0974, found: 220.0968. *T_m* = 128.7 °C.

M4: The crude compound was purified by silica gel chromatography (DCM/EA = 10/1, v/v) to afford **M4** as a white solid. Yield: 40%. ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.49 (m, 4H), 4.34 (m, 1H), 4.06 (m, 1H), 3.68-3.47 (m, 3H), 3.34 (m, 1H), 1.65 (m, 2H), 1.48-1.36 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.04, 170.01, 135.83, 132.59, 130.17, 130.01, 129.18, 128.19, 64.79, 47.23, 46.35, 30.13, 20.15, 13.88. FT-MS (ESI, *m/z*): Calculated for C₁₄H₁₈NO₃ [(*M*+H)⁺]: 248.1275, found: 248.1281. *T_m* = 56.0 °C.

M5: The crude compound was purified by silica gel chromatography (PE/EA = 1/1, v/v) and recrystallized from ethyl acetate to afford **M5** as a white solid. Yield: 45%. ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.53 (m, 4H), 7.39-7.31 (m, 5H), 5.06 (d, *J* = 14.7 Hz, 1H), 4.56 (d, *J* = 14.7 Hz, 1H), 4.12-3.95 (m, 2H), 3.47 (m, 1H), 3.27 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.54, 169.92, 136.33, 135.51, 132.78, 130.39, 130.06, 129.47, 128.90, 128.54, 128.02, 64.71, 50.15, 45.30. FT-MS (ESI, *m/z*): Calculated for C₁₇H₁₆NO₃ [(*M*+H)⁺]: 282.1116, found: 282.1124. *T_m* = 93.4 °C.

Fig. S1 (a) ¹H NMR, (b) ¹³C NMR (DMSO- d_6), and (c) FT-MS spectra of M1.

Fig. S2 (a) 1 H NMR, (b) 13 C NMR (CDCl₃), and (c) FT-MS spectra of M2.

Fig. S3 (a) 1 H NMR, (b) 13 C NMR (CDCl₃), and (c) FT-MS spectra of M3.

Fig. S4 (a) ¹H NMR, (b) ¹³C NMR (CDCl₃), and (c) FT-MS spectra of M4.

Fig. S5 (a) ¹H NMR, (b) ¹³C NMR (CDCl₃), and (c) FT-MS spectra of M5.

Fig. S6 Time-dependent ¹H NMR spectra of the samples taken out from the ROP mixture of **M1** (Table 1, for the preparation of **P1d**). Monomer conversion was determined by comparing the intensity of the peaks i (4.03-4.26 ppm) and that of the peaks 8 + 9 (4.43-4.81 ppm) and 1' (7.78-7.95 ppm). Conv.(%) = $(1-I_i/(I_i + 2I_{8+9}/3 + 2I_1)) \times 100\%$. Degree of polymerization (DP) was calculated by comparing the peak intensities of three groups of protons: 1 + 1' (7.78-8.15 ppm), and 10 (5.27-5.31 ppm).

Fig. S7 ¹H NMR spectra of the alcoholysis products of (a) M1 and (b) P1a in MeOD- d_4 .

Fig. S8 (a) DEPT 135 13 C NMR spectrum and (b) 13 C NMR spectrum of D1 in MeOD- d_4 .

Fig. S9 ¹H-¹³C HSQC NMR spectrum of the degradation product D1 in MeOD- d_4 .

Fig. S10 Time-dependent ¹H NMR spectra of the samples taken out from the ROP mixture of **M2** (Table 2, for the preparation of **P2c**). Monomer conversion was determined by comparing the intensity of peaks $g_1 + g_2(4.30-4.47 \text{ ppm}, 4.07-4.22 \text{ ppm})$ and that of the peaks 7 + 7' (4.48-4.72 ppm, 4.20-4.40 ppm), Conv.(%) = $I_{7+7'}/(I_{g1+g2} + I_{7+7'}) \ge 100\%$. Degree of polymerization was calculated by comparing the peak intensities of three groups of protons: 1 + 1' (7.86-8.15 ppm), and 8 (5.25-5.31 ppm).

Fig. S11 ¹H NMR spectra of the alcoholysis products of (a) M2 and (b-d) P2a in MeOD-d₄.

Fig. S12 ¹H NMR spectra of (a) P3a, (b) P4a and (c) P5a. The *trans* to *cis* ratio was calculated based on the intensity of peaks 1 and 1'.

Fig. S15 DSC thermograms of (a) P1 and (b) P2 with different molar masses.

Fig. S16 ¹H NMR spectra of **P1a**, PLA, and copolymers **C1-C5**. Refer to Table 4 for the ROP conditions. The fraction of hetero-sequence of **M1**-LA diads was calculated by comparing the intensity of peaks **M1**-LA (blue dots) and that of the peak LA-LA (red dot).

Fig. S17 Plausible copolymerization diagram of M1 and LA.

Fig. S18¹H NMR spectrum of the hydrolytic degradation product of P2a in D₂O/DMSO-d₆.

Entry <i>a</i>	[M] ₀ /[TBD]/[I] 0	Time (h)	Conv. ^b (%)	Yield ^c (%)	$M_{ m n,calcd}{}^d$ (kDa)	M _{n,SEC} e (kDa)	Đe
1	20:1:1	5 min	> 99	87	4.2	3.1	1.70
2	40:1:1	5 min	> 99	90	8.3	4.9	1.69
3	80:1:2	4	> 99	86	16.5	8.6	1.53
4	120:1:2	6	> 99	79	24.7	9.9	1.44
5	200:1:2	7	90	71	37.0	12.3	1.36

Table S1 TBD-catalyzed ROP of M2

^{*a*}All reactions were conducted in DMF ($[\mathbf{M2}]_0 = 2.5 \text{ M}$) with BnOH as the initiator and TBD as the catalyst at 30 °C. ^{*b*} Determined by ¹H NMR. ^{*c*}Isolated yield. ^{*d*} $M_{n,calcd} = ([\mathbf{M2}]_0/[BnOH]_0) \times \text{conv.} \times (\text{molar mass of } \mathbf{M2}) + (\text{molar mass of } \mathbf{BnOH})$. ^{*e*}Determined by SEC using DMF (containing 0.1 M LiBr) as eluent and calibrated with PMMA standards.