Supporting Information

Multi-responsive *p*-Methylene-*p*-Butyrolactone/*N*-Vinyl Caprolactam

Copolymers Involving pH-depend Reversible Lactonization

Zhuoqun Wang^a and Antoine Debuigne *^a

Figure S1. FT-IR spectrum of P(*N*VCL-*co*- γ M γ BL) (M_n = 20000 g/mol, $F_{\gamma M\gamma BL}$ =0.05) prepared by conventional radical polymerization (Table 1, entry 1).

Figure S2.(a) ¹H NMR, (b) COSY and (c) HSQC of P(NVCL-*co*- γ M γ BL) (M_n = 11500 g/mol, $F_{\gamma M\gamma BL}$ = 0.1) prepared by OMRP (Table 2, entry 4). *¹H signal of the methyl groups of the initiating fragment R (R= -C(CN)(CH₃)-CH₂-C(CH₃)₂OCH₃).

Figure S3. Overlay of SEC traces for the OMRP of *N*VCl and $\gamma M\gamma BL$ with different monomers/RCo molar ratios: (a) [monomers]_0/[R-Co(acac)_2]_0=250/1, (b) [monomers]_0/[R-Co(acac)_2]_0=500/1, (c) [monomers]_0/[R-Co(acac)_2]_0=750/1. (f^{\circ}_{\gamma M\gamma BL} = 0.1, Table 2 entries 1-3).

Figure S4. (a) Dependence of M_n (full symbols) and D (hollow symbols) on the total monomers conversion and (b) time dependence of $\ln(M_0/M)$ for the OMRP of $NVCL/\gamma M\gamma BL$ with different feed ratio: $\square [NVCL]_0/[\gamma M\gamma BL]_0=0.9/0.1$, • $[NVCL]_0/[\gamma M\gamma BL]_0 = 0.8/0.2$, $\triangle [NVCL]_0/[\gamma M\gamma BL]_0=0.7/0.3$ ([comonomers]_0/[R-Co(acac)_2]_0=250/1, Table 2 entries 1, 4 and 5).

Figure S5. Overlay of SEC traces for the OMRP of *N*VCl and $\gamma M \gamma BL$ with different feed compositions: a) $[NVCl]_0/[\gamma M \gamma BL]_0=0.8/0.2$, b) $[NVCl]_0/[\gamma M \gamma BL]_0/[R-Co(acac)_2]_0=0.7/0.3$. ([comonomers]_0/[R-Co(acac)_2]_0=250/1, Table 2 entries 4 and 5).

Figure S6. (a) ¹H NMR, (b) HSQC and (c) COSY of P(NVCL-*co*-HPEA) (Precursor: P(NVCL-*co*- $\gamma M\gamma BL$) ($M_n = 11500 \text{ g/mol}, F_{\gamma M\gamma BL} = 0.1$) prepared by OMRP (Table 2, entry 4). *¹H signal of the methyl groups of the R initiating fragment (R= -C(CN)(CH₃)-C(H₂-C(CH₃)₂OCH₃).

Figure S7. ¹H NMR spectrum of $P(NVCL)_{91}$ -b- $P(NVCL_{119}$ -co- $\gamma M\gamma BL_{23}$). *¹H signal of the methyl groups of the R initiating fragment (R= -C(CN)(C<u>H</u>₃)-CH₂-C(C<u>H</u>₃)₂OCH₃).

Table S1. Surface zeta potential of $P(NVCL)_{91}$ -*b*-(*NVCL*₁₁₉-*co*-HPEA₂₃) particles in aqueous solution (5mg/mL) at different temperatures.

Temperature (°C)	65	70	80
Zeta potential (mV)	-41.04	-51.85	-55.25