Supporting information

Terphenyl-based Colorless and Heat-resistant Polyimides with Controlled Molecular Structure by Methyl Side Groups

Yunzhi Fang^a, Xiaojie He^b, Jun-Chen Kang^a, Le Wang^a, Tong-Mei Ding^a, Xuemin Lu^a, Shu-Yu Zhang^a*, Qinghua Lu^a*.

^aSchool of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China.

^bSchool of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.

*Corresponding author. E-mail address: qhlu@sjtu.edu.cn; zhangsy16@sjtu.edu.cn.

Contents

1. Characterization

Figure S1. ¹H NMR and ¹³C NMR spectra of DMTD.

Figure S2. ¹H NMR and ¹³C NMR spectra of TMTD.

Figure S3. ¹H NMR and ¹³C NMR spectra of 23TMTD.

Figure S4. ¹H NMR and ¹³C NMR spectra of HMTD.

Figure S5. ¹H NMR and ¹³C NMR spectra of 23HMTD.

Figure S6. DSC curves of polyimides.

Figure S7. The conformer search – energy curves at specific torsions of (a) ϕ_a , (b) ϕ_b and (c) ϕ_c of optimized repeating units by computer simulation.

Table S1. T_g of Reported CPIs.

Table S2. The Molecular Weights of Polyimides.

Table S3. The Solubilities of Polyimides.

Table S4. The Mechanical Properties of Polyimides.

Table S5. Comparison of Typical Properties of Methyl-Substituted Biphenyl and Terphenyl Polyimides.

2. Theoretical Calculation Details

1. Characterization

Figure S1. ¹H NMR and ¹³C NMR spectra of DMTD.

Figure S2. $^1\!\mathrm{H}$ NMR and $^{13}\!\mathrm{C}$ NMR spectra of TMTD.

Figure S3. $^1\!\mathrm{H}$ NMR and $^{13}\!\mathrm{C}$ NMR spectra of 23TMTD.

Figure S4. ¹H NMR and ¹³C NMR spectra of HMTD.

Figure S5. ¹H NMR and ¹³C NMR spectra of 23HMTD.

Figure S6. DSC curves of polyimides.

Figure S7. The conformer search – energy curves at specific torsions of (a) ϕ_a , (b) ϕ_b and (c) ϕ_c of optimized repeating units by computer simulation.

The conformer search based on the torsions of φ_a , φ_b and φ_c reflected the effect of the substitution position of the methyl-groups on their conformations, as shown in **Figure S7. DMTD-6FDA** exhibited the lowest energy of all of the searched conformers based on φ_a ; thus, indicating more opportunities existed for conformational transition when without restriction of methyl groups at the ortho-position of the amino. Furthermore, when two additional methyl groups were substituted to the 2' and 5' positions of the p-terphenyl, the conformer energy in **Figures S7b and 7c** exhibited a significant increase for **HMTD-6FDA** and **23HMTD-6FDA**, which again proved the structural manipulation in increasing the steric hindrance of molecular chain and to obtain a higher T_g .

		Reported CI 15.	
Sample	T _g by DSC (°C)	T _g by DMA (°C)	Reference
PAI-1	318	/	1
PAI-2	314	/	1
tert-butyl-PI	317	342	2
II-1	299	/	3
PI-TBS-1F	302	319	4
PI-TBS-10	297	311	4
PI-5	333	343	5
6FDA-ADMDA	/	383	6
6FDA-DMADMDA	/	392	6
6FDA-TFMB	335	/	7

Table S1. T_{σ} of Reported CPIs.

 Table S2. The Molecular Weights of Polyimides.

Sample	$M_n(\times 10^3)$	$M_{w}(\times 10^{3})$
DMTD-6FDA	98	265
TMTD-6FDA	49	141
HMTD-6FDA	44	118
23TMTD-6FDA	101	252
23HMTD-6FDA	104	278

Sample	Solvent							
Sample	DMSO	DMAC	DMF	NMP	CHCl ₃	THF	CH ₂ Cl ₂	Acetone
TD-6FDA ^a	-	-	-	-	-	-	-	-
DMTD-6FDA	++	++	++	++	++	++	++	-
TMTD-6FDA	++	++	++	++	++	++	++	+
HMTD-6FDA	++	++	++	++	++	++	++	+
23TMTD-6FDA	++	++	++	++	++	++	++	+
23HMTD-6FDA	++	++	++	++	++	++	++	+

Table S3. The Solubilities of Polyimides.

^aTD-6FDA was synthesized from 4,4"-Diamino-p-terphenyl and 6FDA.

++: soluble at room temperature; +: partially soluble upon heating; -: insoluble at room temperature.

Sample	δ _{max} (Mpa)	ɛb (%)	E (GPa)
DMTD-6FDA	108±7	14.2±3.0	2.2±0.1
TMTD-6FDA	125±3	5.5±0.1	2.8±0.1
HMTD-6FDA	96±2	3.8±0.7	2.8±0.2
23TMTD-6FDA	147±5	4.9±0.6	3.2±0.3
23HMTD-6FDA	158±4	5.4±0.2	3.4±0.1

Table S4. The Mechanical Properties of Polyimides.

Sample	d (um)	Tg	YI	E (GPa)
DMTD-6FDA	15	391	5.30	2.2±0.1
TMTD-6FDA	16	396	2.60	2.8±0.1
HMTD-6FDA	16	407	1.48	2.8±0.2
23TMTD-6FDA	18	402	2.17	3.2±0.3
23HMTD-6FDA	17	413	1.66	3.4±0.1
22DMB-PI	17	390	7.59	3.0
33DMB-PI	18	397	5.89	2.3
2255TMB-PI	15	407	4.60	1.8
			$\underline{\mathcal{Y}}_{\mathbf{x}} + \underline{\mathcal{Y}}_{\mathbf{x}} = \underline{\mathcal{Y}}_{\mathbf{x}}$	

Table S5. Comparison of Typical Properties of Methyl-Substituted Biphenyl and

Terphenyl Polyimides.

2. Theoretical Calculation Details

22DMB-PI

The repeating unit of polyimide was used as the model compound and was constructed by BIOVIA material studio 2019 software. The DFT theory was performed using DMol3 module where GGA/PW91 was applied. The condition in the electronic exchange was Double Numerical plus polarization DNP4.4. After the structures were optimized and the virtual frequency was removed, the structures of energy minimization were obtained. The Frontier molecular orbital energy was calculated by

33DMB-PI

2255TMB-PI

^{2.1} Calculation of molecular orbital energy, dihedral angle, FFV and CED

choosing orbitals on the properties tab and the torsion was obtained by measure tool.

FFV and CED were calculated with the aid of Synthia module of BIOVIA material studio 2019 software. The repeating unit was constructed and then optimized by using Forcite. The homopolymer of polyimide was then defined by using Repeat Unit tool in the Polymer Builder functionality. On the Synthia Calculation dialog, calculating the van der Waals molar volume and Cohesive energy, and finally the FFV and CED values can be obtained through density and theoretical formula.

Reference

- 1. H. Zuo, G. Qian, H.-B. Li, F. Gan, Y. Fang, X. Li, J. Dong, X. Zhao and Q. Zhang, *Polym.Chem.*, 2022, **13**, 2999-3008.
- 2. X. Wu, C. Shu, M. Zhong, X. Fan, Z. Yu, W. Huang and D. Yan, Appl. Surf. Sci., 2022, 583.
- 3. Z. Zheng, Y. Xu, Z. Ye, L. Yan, Y. Tao, W. Ma, J. Liu and C. Jian, *Polymer Science, Series B*, 2020, **62**, 756-764.
- Y. C. Wu, Z. G. Chen, J. Q. Ji, Y. B. Zhou, H. H. Huang, S. M. Liu and J. Q. Zhao, *Eur. Polym.* J., 2020, 132.
- 5. Q. Wu, X. Ma, F. Zheng, X. Lu and Q. Lu, *Polym. Int.*, 2019, **68**, 1186-1193.
- J. Miao, X. F. Hu, X. W. Wang, X. S. Meng, Z. Wang and J. L. Yan, *Polym. Chem.*, 2020, 11, 6009-6016.
- 7. T. Matsuura, Y. Hasuda, S. Nishi and N. Yamada, *Macromolecules*, 1991, 24, 5001-5005.