Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Radical-Radical Coupling Effects in the Direct-Growth Grafting-Through Synthesis of

Bottlebrush Polymers using RAFT and ROMP

Mohammed Alaboalirat ^{*a,b*} Clark Vu^{*a,b*} and John B. Matson ^{*a,b**}

^aDepartment of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States

^bMacromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States

E-mail: jbmatson@vt.edu

Scheme S1. Synthesis of Norbornene-functionalized trithiocarbonate **3**^a

°Conditions: (i) THF, rt, 8 h. (ii) THF, 80 °C, 18 h. (iii) CH_2Cl_2 , rt, 16 h.

Figure S1. ¹H NMR spectrum showing crude aliquot of $S^{10\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 10%.

Figure S2. ¹H NMR spectrum showing crude aliquot of $S^{20\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 19%.

Figure S3. ¹H NMR spectrum showing crude aliquot of $S^{30\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 30%.

Figure S4. ¹H NMR spectrum showing crude aliquot of $S^{40\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 40%.

Figure S5. ¹H NMR spectrum showing crude aliquot of $S^{50\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 50%.

Figure S6. SEC traces showing (A) refractive index detector and (B) light scattering detector of PS MMs $S^{10\%}$, $S^{20\%}$, $S^{30\%}$, $S^{40\%}$ and $S^{50\%}$.

Figure S7. PS-MM purification plot showing the absorption of monomer and the MM at 200 nm (red) as the polarity of the mobile phase increases.

Figure S8. ¹H NMR stacked spectra showing the progress of $S_{100}^{30\%}$ from crude MM containing unreacted monomer after RAFT polymerization (bottom) to purified PS-MM after silica column (middle) and to PS-BB after ROMP (top).

Figure S9. SEC trace of light scattering detector and molar mass of bottlebrush polymer $S_{100}^{20\%}$. The molar mass of peak A is 273 kg/mol and peak B is 518 kg/mol.

Figure S10. SEC trace of light scattering detector and molar mass of bottlebrush polymer $S_{100}^{30\%}$. The molar mass of peak A is 276 kg/mol and peak B is 572 kg/mol.

Figure S11. SEC trace of light scattering detector and molar mass of bottlebrush polymer $S_{100}^{40\%}$. The molar mass of peak A is 279 kg/mol and peak B is 574 kg/mol.

Figure S12. SEC trace of light scattering detector and molar mass of bottlebrush polymer $S_{100}^{50\%}$. The molar mass of peak A is 279 kg/mol and peak B is 524 kg/mol.

Figure S13. ¹H NMR spectrum showing crude aliquot of $T^{50\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 53%.

Figure S14. ¹H NMR spectrum showing crude aliquot of $T^{60\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 59%.

Figure S15. ¹H NMR spectrum showing crude aliquot of $T^{70\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 72%.

Figure S16. ¹H NMR spectrum showing crude aliquot of $T^{80\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 77%.

Figure S17. ¹H NMR spectrum showing crude aliquot of $T^{90\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 86%.

Figure S18. SEC traces showing (A) refractive index detector and (B) light scattering detector of PtBA MMs T^{50%}, T^{60%}, T^{70%}, T^{80%} and T^{90%}.

Figure S19. PtBA-MM purification plot showing the absorption of monomer at 265 nm (red) and the MM at 305 nm (blue) as the polarity of the mobile phase increases.

Figure S20. ¹H NMR stacked spectra showing the progress of $T_{100}^{50\%}$ from crude MM containing unreacted monomer after RAFT polymerization (bottom) to purified PtBA-MM after silica column (middle) and to PtBA-BB after ROMP (top).

Figure S21. SEC trace of light scattering detector and molar mass of bottlebrush polymer $T_{100}^{80\%}$. The molar mass of peak A is 413 kg/mol and peak B is 848 kg/mol.

Figure S22. SEC trace of light scattering detector and molar mass of bottlebrush polymer $T_{100}^{90\%}$. The molar mass of peak A is 396 kg/mol and peak B is 888 kg/mol.

Figure S23. ¹H NMR spectrum showing crude aliquot of $M^{50\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 50%.

Figure S24. ¹H NMR spectrum showing crude aliquot of $M^{60\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 63%.

Figure S25. ¹H NMR spectrum showing crude aliquot of $M^{70\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 66%.

Figure S26. ¹H NMR spectrum showing crude aliquot of $M^{80\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 79%.

Figure S27. ¹H NMR spectrum showing crude aliquot of $M^{90\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 85%.

Figure S28. SEC traces showing (A) refractive index detector and (B) light scattering detector of PMMA MMs M^{50%}, M^{60%}, M^{70%}, M^{80%} and M^{90%}.

Figure S29. PMMA-MM purification plot showing the absorption of monomer at 253 nm (red) and the MM at 330 nm (blue) as the polarity of the mobile phase increases.

Figure S30. ¹H NMR stacked spectra showing the progress of $M_{100}^{50\%}$ from crude MM containing unreacted monomer after RAFT polymerization (bottom) to purified PMMA-MM after silica column (middle) and to PMMA-BB after ROMP (top).

Figure S31. ¹H NMR spectrum showing crude aliquot of $A^{50\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 49%.

Figure S32. ¹H NMR spectrum showing crude aliquot of $A^{60\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 59%.

Figure S33. ¹H NMR spectrum showing crude aliquot of $A^{70\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 70%.

Figure S34. ¹H NMR spectrum showing crude aliquot of $A^{80\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 77%.

Figure S35. ¹H NMR spectrum showing crude aliquot of $A^{90\%}$ containing unreacted monomer and MM after RAFT polymerization reaching a monomer conversion of 89%.

Figure S36. SEC traces showing (A) refractive index detector and (B) light scattering detector of PACMO MMs $A^{50\%}$, $A^{60\%}$, $A^{70\%}$, $A^{80\%}$ and $A^{90\%}$.

Figure S37. PACMO-MM purification plot showing the absorption of monomer and the MM at 210 nm (blue) as the polarity of the mobile phase increases.

Figure S38. ¹H NMR stacked spectra showing the progress of $A_{100}^{80\%}$ from crude MM containing unreacted monomer after RAFT polymerization (bottom) to purified PACMO-MM after silica column (middle) and to PACMO-BB after ROMP (top).

Deconvolution of Coupled Bottlebrush Polymers

Figure S39. RI signal from SEC of $S_{100}^{20\%}$ (solid, black), deconvoluted coupled bottlebrush products (dash, red), and deconvoluted uncoupled bottlebrush product (dash, blue).

Figure S40. RI signal from SEC of $S_{100}^{30\%}$ (solid, black), deconvoluted coupled bottlebrush products (dash, red), and deconvoluted uncoupled bottlebrush product (dash, blue).

Figure S41. RI signal from SEC of $S_{100}^{40\%}$ (solid, black), deconvoluted coupled bottlebrush products (dash, red), and deconvoluted uncoupled bottlebrush product (dash, blue).

Figure S42. RI signal from SEC of $S_{100}^{50\%}$ (solid, black), deconvoluted coupled bottlebrush products (dash, red), and deconvoluted uncoupled bottlebrush product (dash, blue).

Figure S43. RI signal from SEC of $T_{100}^{80\%}$ (solid, black), deconvoluted coupled bottlebrush products (dash, red), and deconvoluted uncoupled bottlebrush product (dash, blue).

Figure S44. RI signal from SEC of $T_{100}^{90\%}$ (solid, black), deconvoluted coupled bottlebrush products (dash, red), and deconvoluted uncoupled bottlebrush product (dash, blue).

End group Analysis of Macromonomers

Figure S45. ¹H NMR spectrum of $S^{10\%}$

Figure S46. ¹H NMR spectrum of $S^{20\%}$

Figure S47. ¹H NMR spectrum of $S^{30\%}$

Figure S48. ¹H NMR spectrum of $S^{40\%}$

Figure S49. ¹H NMR spectrum of $S^{50\%}$

Figure S50. ^1H NMR spectrum of $T^{50\%}$

Figure S51. ¹H NMR spectrum of $T^{60\%}$

Figure S52. ¹H NMR spectrum of $T^{70\%}$

Figure S53. ¹H NMR spectrum of $T^{80\%}$

Figure S54. ¹H NMR spectrum of $T^{90\%}$

Figure S55. ¹H NMR spectrum of **M**^{50%}

Figure S56. ¹H NMR spectrum of M^{60%}

Figure S57. ¹H NMR spectrum of $\mathbf{M^{70\%}}$

Figure S58. ¹H NMR spectrum of **M^{80%}**

Figure S59. ¹H NMR spectrum of **M**^{90%}

Figure S60. ^1H NMR spectrum of $A^{50\%}$

Figure S61. ¹H NMR spectrum of $A^{60\%}$

Figure S62. ¹H NMR spectrum of $\mathbf{A}^{70\%}$

Figure S63. ¹H NMR spectrum of $A^{80\%}$

Figure S64. ¹H NMR spectrum of $A^{90\%}$

Offline Measurement of dn/dc of PtBA in THF from RI

Figure S65. Plot of differential refractive index vs. concentration for PtBA (4 kg/mol made by RAFT using CTA shown in Scheme 2A) in THF at 26 °C.

Offline Measurement of dn/dc of PACMO in THF from RI

Figure S66. Plot of differential refractive index vs. concentration for PACMO (3 kg/mol made by RAFT using CTA shown in Scheme 2A) in THF at 26 °C.

Table S1. MMs used in this study

MM	M _{n,theo} ^a	$M_{n,NMR}^{b}$	$M_{n,SEC}^{c}$	Đ	MM	M _{n,theo} ^a	$M_{n,NMR}^{b}$	$M_{n,SEC}^{c}$	Ð
	(kg/mol)	(kg/mol)	(kg/mol)			(kg/mol)	(kg/mol)	(kg/mol)	
S ^{10%}	3.0	3.5	3.0	1.09	M ^{50%}	3.0	2.7	2.8	1.10
S ^{20%}	2.9	3.2	2.8	1.10	M ^{60%}	3.1	3.0	3.0	1.16
S ^{30%}	3.0	4.5	2.8	1.09	M ^{70%}	2.8	2.6	2.8	1.10
S ^{40%}	3.0	4.0	2.8	1.09	M ^{80%}	2.9	2.8	2.8	1.09
S ^{50%}	3.0	3.3	3.0	1.12	M ^{90%}	2.8	2.7	3.4	1.13
T ^{50%}	3.1	3.0	4.7	1.04	A ^{50%}	2.9	2.7	3.9	1.10
T ^{60%}	2.9	3.4	4.7	1.07	A ^{60%}	3.0	3.7	4.3	1.14
T ^{70%}	3.1	4.4	3.9	1.08	A ^{70%}	3.0	4.2	4.5	1.11
T ^{80%}	2.9	3.5	6.0	1.10	A ^{80%}	2.9	2.7	4.2	1.04
T ^{90%}	2.9	5.2	6.7	1.16	A ^{90%}	2.9	4.2	4.3	1.09

^aExpected (theoretical) M_n value based on an assumption of linear molar mass growth with monomer conversion, where monomer conversion was monitored using ¹H NMR spectroscopy. ^bMeasured by ¹H NMR spectroscopy using end group analysis based on norbornene end group proton integrations compared to backbone proton integrations. ^cMeasured by SEC in THF at 30 ^oC using light scattering and refractive index detectors using dn/dc values noted in the Experimental Section.