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Synthesis of 2,4,6-triphenyl-1,3,5-triazine boronate.

A mixture of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (2.40 g, 4.40 mmol), 
bis(pinacolato)diboron (3.80 g, 14.60 mmol), potassium carbonate (1.20 g, 13.20 mmol), and 
Pd(dppf)Cl2 (204 mg, 0.278 mmol) in dry 1,4-dioxane (70 mL) was refluxed under N2 for 24 
h. After cooling to room temperature, the mixture was poured into water (250 mL). The 
aqueous phase was separated and extracted with CH2Cl2 (3 × 80 mL). The combined organic 
extracts were dried with anhydrous Na2SO4, and concentrated under reduced pressure. The 
resultant residue was subjected to column chromatography (petroleum ether/CH2Cl2, 1:1) to 
give the title compound (1.55 g, 50%) as a white solid. 1H NMR (400 MHz, CDCl3) δ 8.75–
8.77 (d, J = 8.0 Hz, 6H), 8.01–8.03 (d, J = 8.4 Hz, 6H).

Methods

1H and 13C NMR analyses were performed on 700 MHz spectrometers (Bruker AVANCE 
NEO 400 Ascend) in the indicated solvents at room temperature. 

High resolution solid-state NMR spectra were recorded on an Agilent NMR spectrometer 
(60054-ASC) using a standard CP pulse sequence probe with 4 mm (outside diameter) zirconia 
rotors. 

Scanning electron microscope (SEM) images were collected using scanning electron 
microscope (JEOL, JSM-7500F) at an accelerating voltage of 5.0 kV. Transmission electron 
microscope (TEM) was performed on a JEM-2100 electron microscope with an accelerating 
voltage of 200 kV. 

TGA was carried out on an American TA-Q20 in nitrogen atmosphere using a 10 °C/min 
ramp without equilibration delay. The Solid-state UV-Vis absorbance was measured by UV 
spectrophotometer (HITACHI, U-3900). 

Powder X-ray diffraction (PXRD) patterns were obtained on a PANalytical Empyrean X-
ray diffractometer with Cu Kα line focused radiation at 40 kV and 40 mA from 2θ = 1° up to 
40° with 0.02° increment by Bragg-Brentano. The powdered sample was added to the glass 
and compacted for measurement. 

N2 adsorption isotherms were measured up to 1 bar at 77 K using a Micrometrics ASAP 
2460 surface area analyzer. Prior to measurements, samples (ca. 100 mg) were degassed for 
over 12 h at 120 °C. UHP grade N2 and He were used throughout the adsorption experiments. 
Oil-free vacuum pumps and oil-free pressure regulators were used for measurements to prevent 
contamination of the samples during the degassing process and isotherm measurement. 

In density functional theory (DFT) calculations, structural optimization of the two 
structural units of TzSPy and TzPy was performed using Gaussian software with a B3LYP/6-
31+G(d,p) basis set and an implicit SMD solvent model.
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Figure S1. Powder XRD patterns of TzPy and TzSPy.
 

Figure S2. Scanning electron microscope images of TzPy (a, c) and TzSPy (b, d).
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Figure S3. The DOS curves, DFT geometry optimizations and the dihedral angles of the 
polymers.

Figure S4. Pore size distribution.
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Figure S5. High-resolution valence band UPS spectrum of TzPy.

Figure S6. Hydrogen evolution rates (HER) of TzPy and TzSPy in the presence of 3 wt% Pt 
under simulated sunlight (AM1.5G).
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Figure S7. HER as a function of reaction time (10 mg of TzSPy from three different batches) 
under simulated sunlight (AM1.5G).

Figure S8. Solid UV/vis absorption spectra of the polymer TzSPy before and after 
photocatalytic H2 evolution reaction in a TEOA/water/MeCN mixture under 
simulated sunlight(AM1.5G) for 24 h.
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Figure S9. FT-IR spectra of the polymer TzSPy before and after photocatalytic H2

evolution reaction in a TEOA/water/MeCN mixture under simulated sunlight
(AM1.5G) for 24 h.

Figure S10. Photoluminescence spectra of the polymer TzSPy before and after photocatalytic 
H2 evolution reaction in a TEOA/water/MeCN mixture 

under simulated sunlight (AM1.5G) for 24 h.
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Figure S11. FT-IR spectra of additional four groups of polymers.

Figure S12. Solid UV/vis absorption spectra of the four groups of polymers.
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Figure S13. Photocurrent response curves of the four groups of polymers.

Figure S14. Electrochemical impedance spectroscopy (EIS) Nyquist plots
of the four groups of polymers.
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Figure S15. Fitted decay time of the four groups of polymers.
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Figure S16. Time-resolved photoluminescence spectra of the four groups of polymers.

Figure S17. 1H NMR (700 MHz, CDCl3) of 2,4,6-triphenyl-1,3,5-triazine boronate.
Table S1 the contrast of PHP Performance of TzSPy and other reported CMPs

Photocatalyst cocatalyst PHP Irradiation AQY% Reference
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(mmolg-1h-1) light

TzSPy 3 wt% Pt 10.3 AM1.5 n/d* This 
work

P-CTF 3 wt% Pt 0.659 AM1.5 2.11@50mg 1

PEG@BT-COF 3 wt% Pt 11.14 ＞420 nm 11.2@420 nm 2

TFPT-COF 2.2 wt%Pt 1.97 ＞420 nm 2.2 3

N3-COF 0.68 wt%Pt 1.70 ＞420 nm n/d* 4

Sp2c-COFERDN 3 wt%Pt 2.12 ＞420 nm 0.48 5

TpPa-COF-
(CH3)2

3 wt%Pt 8.33 ＞420 nm n/d*
6

COF-alkene 3 wt%Pt 2.33 ＞400 nm 6.7 7

CTF-HUST-
C1 

3 wt%Pt 5.1 ＞420 nm n/d*
8

COP-TP3:1 3 wt%Pt 4.2 ＞400 nm 1.5 9

Py-ClTP-
BT-COF 5 wt%Pt 8.875 ＞420 nm 8.45 10

NUS-55 Co(bpy3)Cl2 
8.4 uM 2.48 ＞420 nm 1.55 11

PyTz-COF 3 wt% Pt 2.07 AM1.5 No 12

BTH-3 No 15.1 ＞420 nm 1.256@500nm 13

FS-COF 3 wt% Pt 10.1 AM1.5G 7.8@420 nm 14

PyTA-BC-
Ph COF 3.7 wt%Pt 2.76 ＞420 nm 1.83 15
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