## Surface-Initiated Reversible Addition Fragmentation Chain Transfer of fluoromonomers: an efficient tool to improve interfacial adhesion in piezoelectric composites

## **Supporting Information**

Vincent Bouad<sup>1,2</sup>, Kohji Ohno<sup>3</sup>, Ahmed Addad<sup>2</sup>, Adeline Marin<sup>2</sup>, Nicolas Donzel<sup>1</sup>, Sophie Barrau<sup>2\*</sup>, Joël Lyskawa<sup>2\*</sup> and Vincent Ladmiral<sup>1\*</sup>

<sup>1</sup>ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.

<sup>2</sup> Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France

<sup>3</sup> Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan

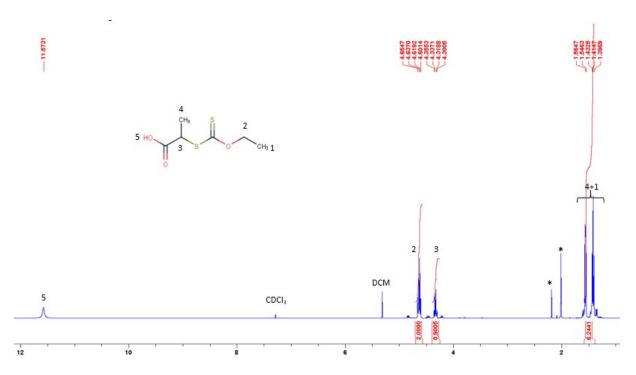



Figure S1. <sup>1</sup>H NMR spectrum of XA-acid recorded in CDCl<sub>3</sub>. \* signals of residual acetone and 2-bromopropionic acid.

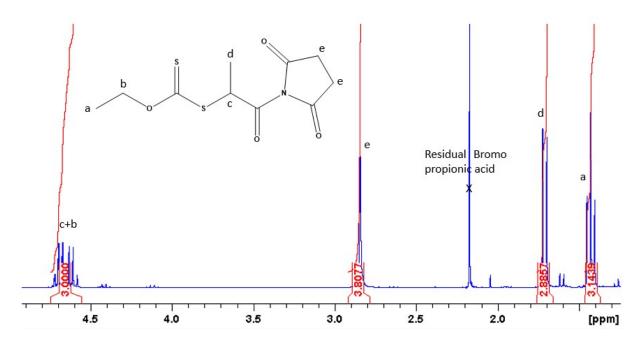



Figure S2. <sup>1</sup>H NMR spectrum of NHS-XA recorded in CDCl<sub>3</sub>.

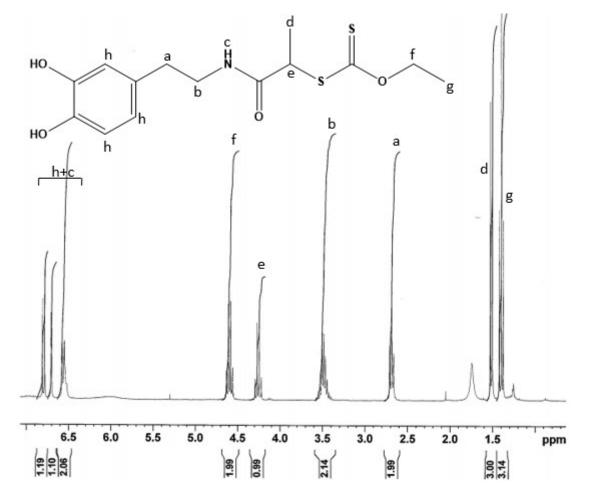



Figure S3. <sup>1</sup>H NMR spectrum of the DOPA-XA, recorded in CDCl<sub>3</sub>.

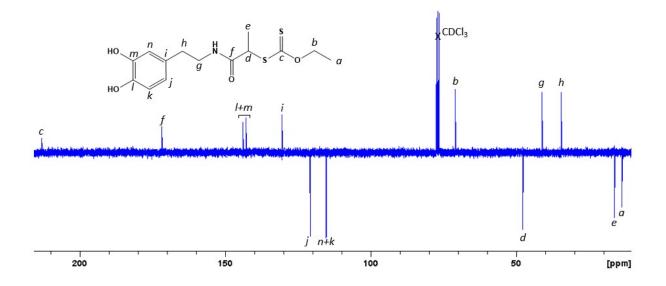



Figure S4. <sup>13</sup>C APT NMR experiment of the DOPA-XA, recorded in CDCl<sub>3</sub>.

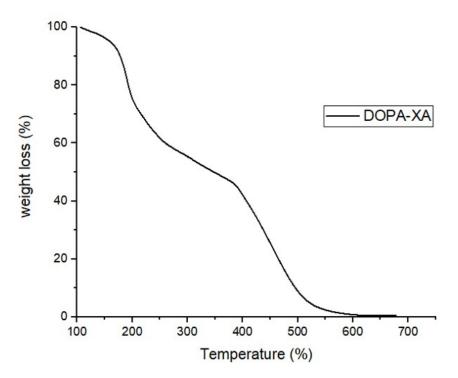



Figure S5. TGA thermogram of DOPA-XA.

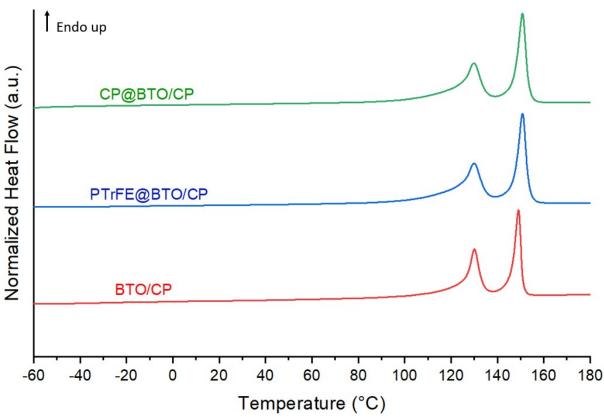



Figure S6. DSC thermograms of the composites with non-modified BTO particles, the PTrFE@BTO particles and with P(VDF-co-TrFE)@BTO particles. The filler content is around 20wt%.

| Sample | вто  | DOPA-XA@BTO | PTrFE@BTO | P(VDF-co-PTrFE)@BTO |
|--------|------|-------------|-----------|---------------------|
| •      |      |             |           |                     |
| 0 1s   | 38.6 | 27.0        | 16.7      | 24.7                |
| C 1s   | 41.4 | 61.8*       | 42.0      | 41.0                |
| Ba 3d  | 9.0  | 2.7         | 3.8       | 6.1                 |
| Ti 2p  | 11.1 | 4.1         | 5.1       | 8.3                 |
| N 1s   | -    | 1.3         | 0.8       | 0.8                 |
| S 2p   | -    | 3.1         | 1.5       | 1.5                 |
| F 1s   | -    | -           | 30.1      | 17.6                |

Table S1. XPS quantification (%) of the functionnalized particles.

\* The relatively high carbon ratio of DOPA-XA surface is probably due to contamination of the sample. It affects the relative atomic ratio and increases the apparent "masking effect" of DOPA-XA on the BTO surface.

Equation S1. Grafting density calculations. Weight losses are calculated using TGA. WL(polymer) stands for polymer weight loss and WL(residue) stands for weight loss of raw BTO.

| Graft density (Polymer) = $\frac{N(polymer)}{S(BTO)}$ S (BTO) = Surface BTO                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Graft density (Polymer) = $\frac{n(polymer) * Na}{S(BTO)}$ Na = 6.022*10 <sup>23</sup>                                                                                                       |
| $Graft \ density \ (Polymer) = \frac{m(polymer) * Na}{S \ (BTO) * Mn \ (polymer)}$                                                                                                           |
| $Graft \ density \ (Polymer) = \frac{m(polymer) * Na}{S \ (BTO) * Mn \ (polymer)}$                                                                                                           |
| $\frac{m(polymer)}{m(BTO)} = \frac{WL(polymer) - \frac{WL(residue)}{100 - WL(residue)} * (100 - WL(Polymer))}{100 - WL(polymer)}$                                                            |
| $Graft \ density \ (Polymer) = \frac{m(BTO) * Na}{S \ (BTO) * Mn \ (polymer)} * \frac{WL(polymer) - \frac{WL(residue)}{100 - WL(residue)} * (100 - WL(Polymer))}{100 - WL(polymer)}$         |
| $Graft \ density \ (Polymer) = \frac{Specific \ surface \ (BTO) * Na}{Mn \ (polymer)} * \frac{WL(polymer) - \frac{WL(residue)}{100 - WL(residue)} * (100 - WL(Polymer))}{100 - WL(polymer)}$ |