Supplementary Information for 'Linear ABC Amphiphilic Triblock Copolymers for Complexation and Protection of dsRNA'

Charlotte E. Pugsley^{1,2}, R. Elwyn Isaac², Nicholas J. Warren¹ and Olivier J. Cayre^{1,*}

¹School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom

²School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom

	Monomer/Polymer						
Solvent	QDMAEMA	PQDMAEMA	TBA	Q-b-B	DMA	Q-b-B-b-D	Q-b-D
H ₂ O	у	у	n	n	у	n	у
Ethanol	У	у	у	у	у	у	
Acetone	y*	n	У	n			n
Hexane	n	n	n	n			
Methanol		у	У	у			
IPA		n	У				
Toluene		n	y/n				
DCM		n	у				
Diethyl ether			У	n			

Table S1. Solubility testing of monomers and polymers, to determine optimal solvent choice for each stage of the polymerisation. * = only with added ethanol.

Figure S1. ¹H NMR (400 MHz) spectra of the homopolymer Q_{100} , the diblock copolymer Q_{100} -*b*-B₂₅ and the triblock copolymer Q_{100} -*b*-B₂₅-*b*-D₅₅, respectively.

Figure S2. ¹H NMR (400 MHz) spectra of the homopolymer Q_{100} , the diblock copolymer Q_{100} -*b*-B₁₇ and the triblock copolymer Q_{100} -*b*-B₁₇-*b*-D₂₁₂, respectively.

Figure S3. Representative TEM images obtained for the 3 triblock copolymers when complexed with dsRNA (A) Q_{100} -b- B_{17} -b- D_{212} , (B) Q_{100} -b- B_{25} -b- D_{55} and (C) Q_{100} -b- B_{44} -b- D_{99} . Solutions were formulated at 1 g L⁻¹, with 5 μ L deposited onto 400-mesh carbon-coated copper grids. Grids were then washed with Milli-Q water and stained with 1% uranyl acetate.

Figure S4. Representative TEM images (at higher magnification) obtained for the 3 triblock copolymers when complexed with dsRNA (A) Q_{100} -b- B_{17} -b- D_{212} , (B) Q_{100} -b- B_{25} -b- D_{55} and (C) Q_{100} -b- B_{44} -b- D_{99} . Solutions were formulated at 1 g L⁻¹, with 5 μ L deposited onto 400-mesh carbon-coated copper grids. Grids were then washed with Milli-Q water and stained with 1% uranyl acetate.

Figure S5. Q_{100} -*b*- B_{25} -*b*- D_{55} /dsRNA agarose gel, varying N/P ratio from 0.25 – 5. For comparison, dsRNA has been run, as well as a 100 bp DNA ladder. * = addition of RNase A.

Figure S6. Q_{100} -*b*-B₄₄-*b*-D₉₉/dsRNA agarose gel, varying N/P ratio from 0.25 – 5. For comparison, dsRNA has been run, as well as a 100 bp DNA ladder. * = addition of RNase A.

Figure S7. Q_{100} -b- B_{17} -b- D_{212} /dsRNA agarose gel, varying N/P ratio from 0.25 – 5. For comparison, dsRNA has been run, as well as a 100 bp DNA ladder. * = addition of RNase A.