Supporting Information

RAFT polymerisation of *N*-vinylformamide and corresponding double hydrophilic block copolymers

Alexis Dupre--Demorsy,^{a,f} Izabela Kurowska,^{a,b,c} Stéphane Balayssac,^a Marie Hennetier,^d Audrey Ric,^d Valérie Bourdon,^e Tsuyoshi Ando,^f Hiroharu Ajiro,^f Olivier Coutelier^a and Mathias Destarac*^a

^aLaboratoire des IMRCP, UMR 5623, Université Paul Sabatier, CNRS, 31062 Toulouse, France.

^bFaculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland.

^cDoctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland.

^dUniversité de Toulouse, Institut National Polytechnique de Toulouse – Ecole d'Ingénieur de Purpan, Département Sciences Agronomiques et Agroalimentaires, 31076 Toulouse Cedex 03, France.

eInstitut de Chimie de Toulouse, UAR 2599, Université Paul Sabatier, CNRS, 31062 Toulouse, France.

^fDivision of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.

Table of contents

Table S1. RAFT polymerization of NVF in DMSO with CTA1 at different initial concentrations at 35°C. $[NVF]_0 = 4.5 \text{ mol } L^{-1}, [V-70]_0 = 5.4 \text{ mmol } L^{-1}$
Table S2. RAFT polymerization of NVF at 35°C in DMSO aiming for different $M_{n,th}$. [V-70] ₀ /[CTA1] ₀ = 0.33. [NVF] ₀ = 4.5 mol L ⁻¹ (30% wt NVF in DMSO)
Table S3. RAFT polymerization of NVF at 35°C in DMSO aiming for $M_{n,th}$ = 100 kg mol ⁻¹ . [NVF] ₀ = 4.5 mol L ⁻¹ , [CTA1] ₀ = 3.2 mmol L ⁻¹ , [V-70] ₀ = 2.7 mmol L ⁻¹ 4
Table S4. Block polymerization of NVF at 35°C in DMSO using PDMA-CTA2, PVCL-CTA2 and PNIPAAm-CTA2 as macro-RAFT agents. $[NVF]_0 = 4.5 \text{ mol } L^{-1}$. $[V-70]_0/[macro-CTA]_0 = 0.33.$
Table S5. ¹ H DOSY-NMR analysis data of the block copolymers and their first block
Fig. S1. ¹ H NMR spectrum of a crude mixture of NVF polymerization with CTA1 (Table S1 entry 13). Measured on a 300MHz apparatus
Fig. S2. Evolution of SEC-RI traces of PNVF with NVF conversion for RAFT polymerization with CTA1 at 35°C (V-70 initiation) aiming for different $M_{n,th}$: (a) 100 kg mol ⁻¹ , (b) 50 kg mol ⁻¹ , (c) 20 kg mol ⁻¹ , (d) 10 kg mol ⁻¹ and (e) 5 kg mol ⁻¹ 7
Fig. S3. Evolution of (a) $M_{n,SEC}$, D and (b) SEC-RI traces with monomer conversion for the RAFT polymerization of NVF in DMSO(data taken from Table S3)
Fig. S4. SEC-RI traces of (a) PDMA- <i>b</i> -PNVF, (b) PVCL- <i>b</i> -PNVF, (c) PNIPAAm- <i>b</i> -PNVF and corresponding first blocks
Fig. S5. Dynamic light scattering measurements at (a) 25°C and (b) 35°C of PNIPAAm- <i>b</i> -PNVF block copolymer at a concentration of 0.5 mg mL ⁻¹ in ultrapure water
Fig. S6. ¹ H NMR spectra of (a) PVCL- <i>b</i> -PNVF, (b) PVCL-CTA2, (c) PNIPAAm- <i>b</i> -PNVF and (d) PNIPAAm-CTA2 analyzed via DOSY-NMR (Table S4). Measured on a 500MHz apparatus

Entry	Targeted M _n	Time	Conversion ^a	$M_{ m n,th}{}^{b}$	$M_{n,SEC}$ ^c	Л
Enuy	(g mol ⁻¹)	(h)	(%)	$(g mol^{-1})$	$(g mol^{-1})$	D
1		2	22	-	192000	1.62
2		4	30	-	183000	1.44
3	_	8	80	-	221000	1.36
4		16	95	-	225000	1.40
5		24	95	-	200000	1.82
6		2	36	18000	22100	1.03
7	50000	8	80	39800	40100	1.03
8		24	93	46200	47800	1.13
9		1.5	13	2500	4700	1.21
10	20000	2	15	3100	6300	1.18
11		4	43	8700	10400	1.17
12	20000	7	58	11700	13200	1.15
13		16	75	15100	14800	1.33
14		24	80	16100	18200	1.23
15		4	27	1700	5100	1.14
16	6000	7	42	2600	4000	1.19
17	0000	16	60	3700	5100	1.19
18		24	66	4000	5100	1.26

Table S1. RAFT polymerization of NVF in DMSO with CTA1 at different initial concentrations at 35°C. $[NVF]_0 = 4.5 \text{ mol } L^{-1}$, $[V-70]_0 = 5.4 \text{ mmol } L^{-1}$.

^acalculated by ¹H NMR, ^b $M_{n,th}$ =[NVF]₀/[CTA1]₀* M_{NVF} *Conv.+ M_{CTA1} , ^c $M_{n,SEC}$ measured with RI-MALS detection. M_{NVF} =71 g mol⁻¹; M_{CTA1} =161 g mol⁻¹.

	1	1	1			
Entry	Targeted M_n	Time	Conversion ^a	$M_{ m n,th}{}^{b}$	$M_{n,SEC} c$	Ð
Lifti y	$(g mol^{-1})$	(h)	(%)	$(g mol^{-1})$	$(g mol^{-1})$	D
1		4	20	20300	17300	1.34
2	100000	8	33	33300	29100	1.32
3	100000	16	42	42400	43600	1.28
4		24	58	58500	53200	1.38
5		2	14	7100	10700	1.18
6	-	4	24	12000	14600	1.19
7	50000	8	43	21400	23300	1.12
8		16	57	28400	29600	1.19
9	-	24	66	32800	34300	1.19
10		2	27	2800	5300	1.12
11	10000	4	46	4700	5400	1.11
12		8	70	7100	8400	1.07
13		16	84	8400	9300	1.13
14	-	24	89	8900	8400	1.23
15		2	35	1900	2600	1.12
16	5000	4	57	2900	4300	1.01
17		8	79	4000	5900	1.10
18		16	90	4500	6200	1.05
19		24	92	4600	5300	1.03

Table S2. RAFT polymerization of NVF at 35°C in DMSO aiming for different $M_{n,th}$. [V-70]₀/[CTA1]₀ = 0.33. [NVF]₀ = 4.5 mol L⁻¹ (30% wt NVF in DMSO).

^acalculated by ¹H NMR, ^b $M_{n,th} = [NVF]_0 / [CTA1]_0 * M_{NVF} * Conv. + M_{CTA1}$, ^c $M_{n,SEC}$ measured with a RI-MALS detection. $M_{NVF} = 71$ g mol⁻¹; $M_{CTA1} = 161$ g mol⁻¹.

Table S3. RAFT polymerization of NVF at 35°C in DMSO aiming for $M_{n,th.}$ = 100 kg mol⁻¹. [NVF]₀ = 4.5 mol L⁻¹, [CTA1]₀ = 3.2 mmol L⁻¹, [V-70]₀ = 2.7 mmol L⁻¹.

Entry	Targeted $M_{\rm n}$	Time	Conversion ^a	$M_{ m n,th}{}^{b}$	$M_{n,SEC}$ c	Л
	$(g mol^{-1})$	(h)	(%)	$(g mol^{-1})$	$(g mol^{-1})$	D
1		2	18	18100	20700	1.31
2	100000	4	32	32100	39200	1.19
3		8	51	51100	53900	1.18
4		16	79	79000	74300	1.22
5		24	87	87000	79500	1.22

^acalculated by ¹H NMR, ^b $M_{n,th} = [NVF]_0 / [CTA1]_0 * M_{NVF} * Conv. + M_{CTA1}$, ^c $M_{n,SEC}$ measured with a RI-MALS detection. $M_{NVF} = 71$ g mol⁻¹; $M_{CTA1} = 161$ g mol⁻¹.

Table S4. Block polymerization of NVF at 35°C in DMSO using PDMA-CTA2, PVCL-CTA2 and PNIPAAm-CTA2 as macro-RAFT agents. $[NVF]_0 = 4.5 \text{ mol } L^{-1}$. $[V-70]_0/[macro-CTA]_0 = 0.33$.

Entry	Polymer	Target. M_n (g mol ⁻¹)	Time (h)	Conv. ^a (%)	$M_{ m n,th}{}^{ m b}$ (g mol ⁻¹)	$ \begin{array}{c} M_{\rm n,SEC} \ ^{\rm c} \\ ({\rm g \ mol^{-1}}) \end{array} $	$D_{\rm SEC}$	$\frac{M_{\rm n,A4F}}{\rm (g\ mol^{-1})}$	$D_{ m AF4}$
1	PDMA- CTA2	5000	16	99	5000	6200	1.30	9900	1.23
2	PDMA- <i>b</i> - PNVF	32700	16	83	28100	-	-	28900	1.21
3	PVCL- CTA2	5000	16	99	5000	6400	1.11	6000	1.04
4	PVCL- <i>b</i> - PNVF	36000	16	82	30600	-	-	37200	1.27
5	PNIPAAm -CTA2	5000	16	99	5000	6300	1.31	9800	1.28
6	PNIPAAm -b-PNVF	40300	16	81	33800	-	-	46800	1.18

acalculated by ¹H NMR. ^b $M_{n,th}$ =[Monomer]₀/[macro-CTA]₀* $M_{Monomer}$ *Conv.+ $M_{n,macro-CTA}$; ^c measured with a RI-MALS detection.

Table S5. ¹H DOSY-NMR analysis data of the block copolymers and their first block.

Entry	Polymer	$M_{ m n,SEC}{}^{ m a}$ $(M_{ m n,A4F}{}^{ m a})$ $(m g mol^{-1})$	Diffusion coefficient of first block ^b (µm ² s ⁻¹)	Diffusion coefficient of second block ^b (µm ² s ⁻¹)
1	PDMA-CTA2	6200 (9900)	33.2 ± 0.4 (c)	-
2	PDMA- <i>b</i> -PNVF	(28900)	4.0 ± 0.6 (c)	$3.8 \pm 0.4 \; (f+g)$
3	PVCL-CTA2	6400 (6000)	58 ± 3 (c)	-
4	PVCL- <i>b</i> -PNVF	(37200)	$2.5 \pm 0.3 (a+e+f)$	2.5 ± 0.3 (h+i)
5	PNIPAAm-CTA2	6300 (9800)	32.6 ± 0.5 (e)	-
6	PNIPAAm- <i>b</i> -PNVF	(46800)	3.4 ± 0.6 (e)	2.9 ± 0.4 (h+i+c)

^a measured with a RI-MALS detection; ^b determined by DOSY-NMR technique applied on the attributed ¹H NMR signals of Fig. 6 for PDMA-CTA2 and PDMA-*b*-PNVF and of Fig. S4 for the two other copolymers.

Fig. S1. ¹H NMR spectrum of a crude mixture of NVF polymerization with CTA1 (Table S1 *Conversion* (%) = $\frac{(d + c' + d') - b}{(d + c' + d') + b} \times 100$ entry 13). Measured on a 300MHz apparatus.

Fig. S2. Evolution of SEC-RI traces of PNVF with NVF conversion for RAFT polymerization with CTA1 at 35°C (V-70 initiation) aiming for different $M_{n,th}$: (a) 100 kg mol⁻¹, (b) 50 kg mol⁻¹, (c) 20 kg mol⁻¹, (d) 10 kg mol⁻¹ and (e) 5 kg mol⁻¹.

Fig. S3. Evolution of (a) $M_{n,SEC}$, D and (b) SEC-RI traces with monomer conversion for the RAFT polymerization of NVF in DMSO (data taken from Table S3).

Fig. S4. SEC-RI traces of **(a)** PDMA-*b*-PNVF, **(b)** PVCL-*b*-PNVF, **(c)** PNIPAAm-*b*-PNVF and corresponding first blocks.

Fig. S5. Dynamic light scattering measurements at **(a)** 25°C and **(b)** 35°C of PNIPAAm-*b*-PNVF block copolymer at a concentration of 0.5 mg mL⁻¹ in ultrapure water.

Fig. S6. ¹H NMR spectra of (a) PVCL-*b*-PNVF, (b) PVCL-CTA2, (c) PNIPAAm-*b*-PNVF and (d) PNIPAAm-CTA2 analyzed via DOSY-NMR (Table S4). Measured on a 500MHz apparatus.