Supporting Information

Polar additive triggered chain walking copolymerization of ethylene and fundamental polar monomers

Yuxing Zhang,^{a,b} and Zhongbao Jian^{a,b,*}

^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China. ^b University of Science and Technology of China, Hefei 230026, China.

Contents

-	Table	e S1. Effect of Polar Additive on Copolymerization of Ethylene and MA with Pd ^a	1
1.	Ge	neral information	2
2.	Pro	pposed mechanism of polar monomer insertion in copolymerization	3
3.	NM	IR Figures of Polymers	6
	3.1	NMR Spectra of Polymers in Table 1.	6
	3.2	NMR Spectra of Polymers in Table 2.	22
4.	FT	-IR spectra of Polymers	30
5.	GF	PC of Polymers	32
6.	Re	ferences	38

Table S1. Effect of Polar Additive on Copolymerization of Ethylene and MA with Pd^a

entry	[PA]/Pd	T (°C)	yield (g)	act. (10 ³) ^b	<i>M</i> _n (10 ³) ^c	<i>M</i> _w (10 ³) ^c	M _w ∕M _n ^c	brs ^d	Xe
1	0	90	4.73	9.85	52	108	2.07	154	2.3
2	10	90	4.88	10.17	62	111	1.80	122	1.4
3	25	90	4.95	10.31	62	120	1.93	94	1.0
4	50	90	6.11	12.73	94	214	2.25	64	0.7
5	100	90	4.16	8.67	59	104	1.76	50	0.5
6 ^{<i>f</i>}	1000	90	0.74	18.38	52	92	1.78	49	0.4

^{*a*} Reaction conditions: Pd catalyst (60 µmol), NaBArF(1.5 eq.), toluene/CH₂Cl₂ (115 mL/5 mL), polymerization time (8 h), polymerization temperature (90 °C), MA(1.6 mol/L) all entries are based on at least two runs, unless noted otherwise. ^{*b*} Activity is in unit of 10³ g mol⁻¹ h⁻¹. ^{*c*} Determined by GPC in THF at 40 °C. ^{*d*} brs = Number of branches per 1000C, as determined by ¹H NMR spectroscopy. ^{*e*} X = Incorporation of MA in copolymer, as determined by ¹H NMR spectroscopy. ^{*f*} acrylonitrile was used instead of p-tolunitrile, ref 1.

1. General information

General Procedures: All syntheses involving air- and moisture sensitive compounds were carried out using standard Schlenk-type glassware (or in a glove box) under an atmosphere of nitrogen. All solvents were purified from the MBraun SPS system. NMR spectra for the ligand, complex, and polymers were recorded on a Bruker AV400 (¹H: 400 MHz, ¹³C: 100 MHz) or a Bruker AV500 (¹H: 500 MHz, ¹³C: 125 MHz). NMR assignments were confirmed by ¹H-¹H COSY, ¹H-¹³C HSQC and ¹H-¹³C HMBC experiments when necessary. The molecular weights (*M*_n) and molecular weight distributions (*M*_w/*M*_n) of polyethylenes and copolymers were measured by means of gel permeation chromatography (GPC) on a PL-GPC 220-type high-temperature chromatograph equipped with three PL-gel 10 μ m Mixed-B LS type columns at 150 °C.

A general procedure for produce the copolymers using Pd catalyst

In a typical experiment, a 75 mL or 350 mL glass pressure reactor connected with a high pressure gas line was firstly dried at 90 °C under vacuum for at least 1 h. The reactor was then adjusted to the desired polymerization temperature. 28 mL or 115 mL of toluene with NaBArF, galvinoxyl and additive (p-tolunitrile) were added to the reactor under N₂ atmosphere, then the desired polar monomer and the desired amount of Pd catalyst in 2 mL or 5 mL of CH₂Cl₂ was injected into the polymerization system via syringe subsequently. With a rapid stirring, the reactor was pressurized and maintained at desired ethylene pressure. After certain hours, the pressure reactor was vented and the polymerization was quenched via the addition of 200 mL MeOH, then the solvent was removed under vacuum and dried in a vacuum oven to constant weight.

2. Proposed mechanism of polar monomer insertion in copolymerization

Figure S1. AAc (allyl acetate) insertion mechanism and corresponding incorporation patterns in copolymerization.

Figure S2. VAc (vinyl acetate) insertion mechanism and corresponding incorporation patterns in copolymerization.

Figure S3. BAE (Butyl allyl ether) insertion mechanism and corresponding incorporation patterns in copolymerization.

3. NMR Figures of Polymers

3.1 NMR Spectra of Polymers in Table 1.

Figure S4. ¹H NMR spectrum (C₂D₂Cl₄, 110 °C) of E-AAc copolymer from table 1, entry 3.

Figure S6. ¹H NMR spectrum (4C₂D₂Cl₄, 110 °C) of E-AAc copolymer from table 1, entry 5. (*: toluene)

Figure S7. ¹H NMR spectrum (C₂D₂Cl₄, 110 °C) of E-AAc copolymer from table 1, entry 6. (*: toluene, #: impurity)

Figure S8. ¹H NMR spectrum (C₂D₂Cl₄, 110 °C) of E-AAc copolymer from table 1, entry 9.

Figure S12. ¹H NMR spectrum (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 15.

Figure S14. ¹H NMR spectrum (C₂D₂Cl₄, 110 °C) of E-AAc copolymer from table 1, entry 17.

Figure S15. ¹H NMR spectrum (C₂D₂Cl₄, 110 °C) of E-AAc copolymer from table 1, entry 18. (#: impurity)

Figure S16. ¹H NMR spectrum (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 21. (Structure c was assigned according to a report of Takeuchi²)

Figure S17. ¹³C NMR (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 21.(Assignment was according to reports of Nozaki^{3,4})

Figure S18. ¹³C NMR (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 21. (enlarged)

Figure S20. ¹H-¹³C HSQC NMR (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 21.

Figure S21. ¹H-¹³C HSQC NMR (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 21. (enlarged)

Figure S22. ¹H-¹³C HSQC NMR (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 21. (enlarged)

Figure S26. ¹H NMR spectrum (C₂D₂Cl₄, 110 °C) of E-AAc copolymer from table 1, entry 24. (#: impurity)

Figure S27. ¹H NMR spectrum (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 26. (#: impurity)

Figure S28. ¹H NMR spectrum (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 27. (Structure c was assigned according to a report of Takeuchi²)

Figure S30. ¹³C NMR (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 27. (enlarged)

Figure S32. ¹H-¹³C HSQC NMR (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 27.

Figure S33. ¹H-¹³C HMBC NMR (CDCl₃, 25 °C) of E-AAc copolymer from table 1, entry 27.

3.2 NMR Spectra of Polymers in Table 2.

Figure S35. ¹H-¹H COSY NMR (C₂D₂Cl₄, 110 °C) of E-tBB copolymer from table 2, entry 2.

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Chemical Shifts (ppm)

Figure S36. ¹³C NMR (C₂D₂Cl₄, 110 $^{\circ}$ C) of E-tBB copolymer from table 2, entry 2.

Figure S37. ¹³C NMR (C₂D₂Cl₄, 110 °C) of E-tBB copolymer from table 2, entry 2. (enlarged)

Figure S38. ¹H-¹³C HSQC NMR (C₂D₂Cl₄, 110 °C) of E-tBB copolymer from table 2, entry 2. (enlarged)

Figure S39. ¹H-¹³C HMBC NMR (C₂D₂Cl₄, 110 °C) of E-tBB copolymer from table 2, entry 2. (enlarged)

Figure S41. ¹H-¹H COSY NMR (C₂D₂Cl₄, 110 °C) of E-BAE copolymer from table 2, entry 4.

Figure S42. ¹H-¹³C HSQC NMR (C₂D₂Cl₄, 110 °C) of E-BAE copolymer from table 2, entry 4.

Figure S43. ¹H NMR (C₂D₂Cl₄, 110 °C) of E-ACI copolymer from table 2, entry 6. (no ACI incorporation)

Figure S44. ¹H NMR (C₂D₂Cl₄, 110 °C) of E-BVE copolymer from table 2, entry 8. (no BVE incorporation)

Figure S45. ¹H NMR (C₂D₂Cl₄, 110 °C) of E-AA copolymer from table 2, entry 10. (no AA incorporation)

Figure S46. ¹H NMR ($C_2D_2Cl_4$, 110 °C) of E-AIA copolymer from table 2, entry 12. (Assignment was according to a report of Claverie ⁵)

Figure S47. ¹H-¹H COSY NMR (C₂D₂Cl₄, 110 °C) of E-AIA copolymer from table 2, entry 12.

Figure S49. ¹H NMR (C₂D₂Cl₄, 110 °C) of E-AMA copolymer from table 2, entry 14.

4. FT-IR spectra of Polymers

Figure S51. FT-IR (ATR) of E-AA copolymer from table 2, entry 10 (no AA incorporation)

Figure S53. FT-IR (ATR) of E-AMA copolymer from table 2, entry 14 (acyclic incorporation)

5. GPC of Polymers

MW Averages

Peak No	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
1	29396	24069	28005	31303	34434	27538	1.16353

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		13.60	14.33	15.83	-28.3204	100	913.603	100

Figure S54. GPC trace of the copolymer from table 1, entry 1.

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		12.90	14.02	15.37	-19.5197	100	820.119	100
		A 1	C (1		e			

Figure S55. GPC trace of the copolymer from table 1, entry 11.

-				
Peak No	Mp	Mn	Mw	

Peak No	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
1	57033	31589	50462	67659	81811	48069	1.59745

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		13.05	13.87	15.83	-20.6227	100	1417.85	100
Figure St	56. GPC	C trace of	the copo	olymer fro	om table 1,	, entry 17.		

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		13.83	14.92	16.85	-11.1312	100	835.037	100

Figure S57. GPC trace of the copolymer from table 1, entry 21.

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		13.28	14.38	16.30	-5.81545	100	434.325	100

Figure S58. GPC trace of the copolymer from table 1, entry 23.

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		13.38	14.72	16.57	-2.46444	100	189.941	100

Figure S59. GPC trace of the copolymer from table 1, entry 26.

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		13.87	15.07	17.02	-4.49339	100	360.785	100
Figure S6	60. GPC	trace of	the copol	ymer fro	m table 1, o	entry 27.		

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		12.82	14.03	16.20	-11.3975	100	853.555	100

Figure S61. GPC trace of the copolymer from table 2, entry 2.

Processed	d Peaks
-----------	---------

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		13.65	15.03	17.45	-16.644	100	1415.41	100

Figure S62. GPC trace of the copolymer from table 2, entry 4.

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		13.23	14.38	17.03	-15.1104	100	1228.73	100
Figure S	63. GP	C trace o	f the cop	olymer f	rom table	2, entry 1	2.	

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		13.35	14.38	16.30	-10.7531	100	812.722	100
igure S64 CPC trace of the conclumer from table 2 entry 14								

Figure S64. GPC trace of the copolymer from table 2, entry 14.

Peak No	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
1	23232	12399	23404	35295	46925	21895	1.88757

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		13.32	14.57	16.90	-18.1942	100	1418.94	100
Figure S65. GPC trace of the copolymer from table 2, entry 18.								

6. References

- 1. Y. Zhang and Z. Jian, *Macromolecules*, 2021, **54**, 3191-3196.
- 2. D. Takeuchi, T. Yamada, Y. Nakamaru, K. Osakada, I. Aratani and Y. Suzuki, *Organometallics*, 2019, **38**, 2323-2329.
- 3. S. Ito, M. Kanazawa, K. Munakata, J.-i. Kuroda, Y. Okumura and K. Nozaki, *J. Am. Chem. Soc.*, 2011, **133**, 1232-1235.
- 4. B. P. Carrow and K. Nozaki, *J. Am. Chem. Soc.*, 2012, **134**, 8802-8805.
- 5. J.-C. Daigle, L. Piche, A. Arnold and J. P. Claverie, *Acs Macro Lett.*, 2012, **1**, 343-346.