Supporting information

Mechanistic Investigation of Cyclic Ketene Acetal Radical Ring-Opening Homo- and Co-Polymerization and Preparation of PEO Graft Copolymers With Tunable Composition

Yifeng Du,^{1,‡,*} Yuhui Du,^{2,‡} Stefano Lazzari,³ Tom Reimers,^{2,†} Rupert Konradi,⁴ Thomas W. Holcombe,¹ E. Bryan Coughlin^{2,*}

¹BASF Advanced Chemicals Co., Ltd., Shanghai, 200137, China

²Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA

³BASF SE, Digitalization, Automation & Innovation Management, Ludwigshafen, 67056, Germany

⁴BASF Corporation, Cambridge, Massachusetts, 02138, USA

[‡]Authors contributed equally to this work.

*Correspondence to: yi-feng.du@basf.com, coughlin@mail.pse.umass.edu

Synthesis of 5,6-benzo-2-methylene-1,3-dioxepane (BMDO)

Step 1: synthesis of 5,6-benzo-2-(bromomethyl)-1,3-dioxepane. 1,2-benzenedimethanol (147.1 g, 1.06 mol), bromoacetaldehyde dimethylacetal (180.0 g, 1.06 mol) were mixed as the stock solution. Dioxane (100 g) and *p*-toluenesulfonic acid (1.01 g, 10 mmol) was added to a pre-dried three-neck flask fitted with a Claisen bridge and dropping funnel for collecting methanol. Increase the temperature to 100 °C and start adding the stock solution dropwise over 5 h under nitrogen. Keep effectively recycling dioxane while removing the methanol. When almost all the calculated amount of methanol was collected, the temperature was raised to 120 °C under reduced pressure. After cooling at room temperature, the crude product solidified. The product was dissolved in CHCl₂ and washed with NaHCO₃ solution and water. The solution was then dried over MgSO₄, concentrated, and recrystallized in a mixture of chloroform and *n*-hexane to give 180.0 g (yield = 80 %) of pale-yellow crystals.

Step 2: synthesis of BMDO. A mixture of 5,6-benzo-2-(bromomethyl)-1,3-dioxepane (180.0 g, 0.74 mol), t-BuOK (92.5 g, 0.96 mol) and 800 mL t-BuOH were added into a round-bottom flask and allowed to react under nitrogen at 80 °C for 24 h. After cooling to room temperature, the reaction mixture was poured into 2 L of diethyl ether. The insoluble material was removed by passing through Al_2O_3 . The diethyl ether was removed, and the crude liquid was distilled under reduced pressure to give a colorless liquid which solidified to white crystals (92.0 g, yield = 77%).

Figure S1 ¹H NMR of (A) 5,6-benzo-2-(bromomethyl)-1,3-dioxepane and (B) BMDO.

Figure S2. ¹H NMR of (A) 2-(chloromethyl)-1,3,6-trioxocane and (B) MTC.

Figure S3 NMR characterization of poly(MTC). (a) ¹H NMR (b) ¹³C NMR: no acetal carbon (100 ppm - 110 ppm) was observed, indicating 100% ring-opening of MTC (c) DEPT-135 (d) HMQC

Figure S4 NMR characterization of poly(BMDO). (a) ¹H NMR (b) ¹³C NMR: no acetal carbon (100 ppm - 110 ppm) was observed, indicating 100% ring-opening of MTC (c) DEPT-135 (d) HMQC

Figure S5 GPC characterization of a) poly(MTC) and b) poly(BMDO).

Figure S6 Full spectra of MALDI-TOF characterization of CKA homopolymers using various solvents, poly(BMDO) w/ (A) anisole or (B) dioxane, and poly(MTC) w/ (C) anisole or (D) dioxane.

Figure S7 ¹H NMR assignments for a crude polymerization solution aliquot. The concentrations and conversions of BMDO and *NVP* can be calculated based on peak integrations.

Figure S8 ¹H NMR assignments for a crude polymerization solution aliquot. The concentrations and conversions of MTC and *NVP* can be calculated based on peak integrations.

Figure S10 (a) ¹H NMR and (b) ¹³C NMR of a poly(BMDO-NVP).

Trial	T (°C)	Initiator	BMDO : NVP	Initiator dosing	NVP dosing	BMDO dosing
(1)	80	AIBN	1:3	50% over 5h	100% 5h	-
(2)	100	^t BuPE	1:3	100% over 5h	100% 5h	-
(3)	100	^t BuPE	1:4	100% over 5h	100% 5h	-
		T • • •				
Trial	T (°C)	Initiator	MTC : NVP	Initiator dosing	NVP dosing	MTC dosing
(4)	80	AIBN	1:3	50% over 5h	100% 5h	-
(5)	80	AIBN	1:3	50% over 5h	100% 5h	50% over 3h
(6)	100	^t BuPE	1:3	100% over 5h	100% 5h	30% over 5h
(7)	100	^t BuPE	1:9	100% over 5h	100% 5h	80% over 5h

Table S1 Synthetic Parameters of the Semi-Batch Polymerization of CKA and NVP in dioxane.

Figure S11 Polymer dispersity evolution with conversion (*X*) for BMDO *NVP* semi-batch polymerization. (Trial 1, initiator: AIBN, 80 °C, initiator and *NVP* dosing over 5 h)

Figure S12 Monomer conversion (X) vs. time (A-D) and scientific monomer conversion vs. time (E-H) of MTC NVP semi-batch polymerizations, following trials (4-7).

Figure S13 Polymer molecular weight change with conversion (X) characterized with GPC for MTC, NVP semi-batch polymerization.

(Trial 4, initiator: AIBN, 80 °C, initiator and NVP dosing over 5h)

Figure S14 The change of polymer compositions and diffusion coefficients over time, monitored using DOSY for MTC, NVP semi-batch polymerization. (Trial 4, initiator: AIBN, 80 °C, initiator and *N*VP dosing over 5h)

Figure S15 GPC characterization demonstrates the effective removal of un-grafted PEG via diethyl ether fractionation.

~ **73%** PEG 1k Da grafted with NVP, MTC

Precipitation in **diethyl ether** \rightarrow <u>Un-grafted PEG removed</u>

Peak	δ (ppm)	Integration	Assignment
а	4.41 4.08	2	2H, MTC
m	3.69 3.55	227.03	4H, PEG
b	3.43 3.01	18.25	1H, NVP 4H, MTC

Precipitation in n-hexane -	Un-grafted PEG +	- grafted PEG retained
-----------------------------	------------------	------------------------

Peak	δ (ppm)	Integration	Assignment
а	4.39 4.10	2	2H, MTC
m	3.69 3.55	312.11	4H, PEG
h			1H, NVP
d	3.42 3.02	14.71	4H, MTC

Figure S16 ¹H NMR characterization of a PEG grafted CKA NVP copolymer. The grafting ratio can be calculated based on the integration change of PEG moieties in (A) diethyl ether precipitate and (B) n-hexane precipitate, respectively.

Figure S17 DSC characterization of PEO.

Figure S18 DSC characterization of $poly(BMDO_n-NVP_{3n})$.

Figure S19 DSC characterization of $poly(MTC_n-NVP_{3n})$.

Figure S20 DSC characterization of poly[(EO_{1k}-g-(MTC_n-NVP_{3n})]_PEO 70 wt%.

Figure S21 DSC characterization of poly[(EO_{1k}-g-(MTC_n-NVP_{3n})]_PEO 30 wt%.