Supporting Information

Straightforward synthesis of aliphatic polydithiocarbonates from commercially available starting materials

Timo Sehn, Birgit Huber, Julian Fanelli and Hatice Mutlu*

Soft Matter Synthesis Laboratory (SML) Karlsruhe Institut of Technologie (KIT) Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen, D-76344 Germany

Content

Section A. Materials

Section B. Synthetic Procedures

- B.1. Synthetic procedure and characterization data of P1.
- B.2. Synthetic procedure and characterization data of P2.
- B.3. Synthetic procedure and characterization data of P3.
- B.4. Synthetic procedure and characterization data of P4.
- B.5. Synthesis of DBU-Imidazole ionic liquid.
- B.6. Synthetic procedure of 3,6-Dioxa-1,8-octanedithio-*bis*-carbonylimidazole.
- B.7. Synthetic procedure of model compound (MC).

Section C. Measurements and Analysis

Section D. Additional Data

Section A. Materials

The compounds were synthesized using the following starting materials from the stated manufacturers with given purities and without further purification: 1,1'-carbonyldiimidazole (ACROS ORGANICS, 97%), 1,6-hexamethylenedithiol (ALFA AESAR, 97%), 1,8-diazabicyclo[5.4.0]undec-7-ene (MERCK. >98%), 3,6-dioxa-1,8-octanedithiol (SIGMA ALDRICH, 95%), methanol (FISCHER CHEMICAL, >99.9%), chloroform (SIGMA ALDRICH, >99%), dichloromethane (DCM, Acros Organics, >99.9%).

Section B. Synthetic Procedures

B.1. Synthetic procedure and characterization of P1

First, a 5.00 mL crimp vial was charged with 1,1'-carbonyldiimidazole (566 mg, 3.49 mmol, 1.05 equiv.) and a stirring bar. After purging the reaction vessel with nitrogen for 5 minutes, dry chloroform (0.83 M), 1,6-hexamethylenedithiol (500 mg, 3.33 mmol, 0.51 mL, 1.00 equiv.) and 1,8-Diazabicyclo[5.4.0]undec-7-ene (1.02 g, 1.00 mL, 6.70 mmol, 2.00 equiv.) were sequentially added under a continuous nitrogen flow. The reaction mixture was stirred under inert atmosphere for 4 hours at ambient temperature. Subsequently, **P1** was precipitated twice in ice cold methanol (150 mL), filtrated, and redissolved in DCM (10 mL). After evaporation of the solvent under reduced pressure, the obtained polymer **P1** was additionally dried under reduced pressure at 40°C for 12 hours. The desired product was obtained as a white polymer film (Yield = 81 %).

¹H NMR (400 MHz, CDCl₃): depicted in the main text in Figure 1D

 $^{\rm 13}{\rm C}$ NMR (100 MHz, CDCl_3): shown in Section D. Additional Data, Figure S4

B.2. Synthetic procedure and characterization of P2

First, a 5.00 mL crimp vial was charged with 1,1'-carbonyldiimidazole (566 mg, 3.49 mmol, 1.05 equiv.) and a stirring bar. After purging the reaction vessel with nitrogen for 5 minutes, dry chloroform (0.83 M), 3,6-dioxa-1,8-octanedithiol (607 mg, 3.33 mmol, 0.55 mL, 1.00 equiv.) and 1,8-Diazabicyclo[5.4.0]undec-7-ene (1.02 g, 1.00 mL, 6.70 mmol, 2.00 equiv.) were sequentially added under a continuous nitrogen flow. The reaction mixture was stirred under inert atmosphere for 4 hours at ambient temperature. Subsequently, **P2** was precipitated twice in ice cold methanol (150 mL), filtrated, and redissolved in DCM (10 mL). After evaporation of the solvent under reduced pressure, the obtained polymer **P2** was additionally dried under reduced pressure at 40°C for 12 hours. The desired product was obtained as a white highly viscous liquid (Yield = 92 %).

¹H NMR (400 MHz, CDCl₃): shown in the main text in Figure 2A

¹³C NMR (100 MHz, CDCl₃): shown in Section D. Additional Data, Figure S7

B.3. Synthetic procedure and characterization of P3

First, a 5.00 mL crimp vial was charged with 1,1'-carbonyldiimidazole (566 mg, 3.49 mmol, 1.05 equiv.) and a stirring bar. After purging the reaction vessel with nitrogen for 5 minutes, dry chloroform (0.83

M), 1,6-hexamethylenedithiol (309 mg, 1.70 mmol, 0.26 mL, 0.50 equiv.) and 1,8-Diazabicyclo[5.4.0]undec-7-ene (0.51 g, 0.50 mL, 3.35 mmol, 1.00 equiv.) were sequentially added under a continuous nitrogen flow. Simultaneously, a second vial was charged with 3,6-dioxa-1,8-octanedithiol (302 mg, 0.27 mL, 1.66 mmol, 0.50 equiv.), dry chloroform (0.8 M) and Diazabicyclo[5.4.0]undec-7-ene (0.51 g, 0.50 mL, 3.35 mmol, 1.00 equiv.) under inert atmosphere. After stirring for 5 minutes at ambient temperature, the reaction mixture of vial 2 was transferred into vial 1. Subsequently, the resulting reaction solution was additionally stirred under inert atmosphere for 4 hours at ambient temperature. Finally, copolymer **P3** was precipitated twice in ice cold methanol (150 mL), filtrated, and redissolved in DCM (10 mL). After evaporation of the solvent under reduced pressure, the obtained copolymer **P3** was additionally dried for 12 hours under reduced pressure at 40°C. The desired product was obtained as a yellow solid (Yield = 82%).

¹H¹H NMR (400 MHz, CDCl₃): shown in the main text in Figure 2A

 $^{\rm 13}{\rm C}$ NMR (100 MHz, CDCl_3): shown in Section D. Additional Data, Figure S10

B.4. Synthetic procedure and characterization of P4

First, a 5.00 mL crimp vial was charged with 1,1⁻-carbonyldiimidazole (566 mg, 3.49 mmol, 1.05 equiv.) and a stirring bar. After purging the reaction vessel with nitrogen for 5 minutes, dry chloroform (0.83 M), 1,6-hexamethylenedithiol (500 mg, 3.33 mmol, 0.51 mL, 1.00 equiv.), elemental sulfur (53.4 mg, 1.67 mmol, 0.50 equiv.) and 1,8-Diazabicyclo[5.4.0]undec-7-ene (1.02 g, 1.00 mL, 6.70 mmol, 2.00 equiv.) were sequentially added under a continuous nitrogen flow. The reaction mixture was stirred under inert atmosphere for 4 hours at ambient temperature. Subsequently, **P4** was precipitated twice in ice cold methanol (150 mL), filtrated and redissolved in DCM (10 mL). After evaporation of the solvent under reduced pressure, the obtained polymer **P4** was additionally dried under reduced pressure at 40°C for 12 hours. The desired product was obtained as a yellowish solid (Yield = 65 %).

¹H NMR (400 MHz, CDCl₃): shown in Section D. Additional Data, Figure S13

 $^{\rm 13}{\rm C}$ NMR (100 MHz, CDCl_3): shown in Section D. Additional Data, Figure S14

B.5. Synthesis of DBU-Imidazole ionic liquid

First, a 5.00 mL crimp vial was charged with Imidazole (453 mg, 0.368 mL, 6.66 mmol, 1.00 equiv.) and a stirring bar. After purging the reaction vessel with nitrogen for 5 minutes, dry chloroform (4 mL) and 1,8-Diazabicyclo[5.4.0]-7-undecene (1.01 g, 0.994 mL, 6.66 mmol, 1.01 equiv) were sequentially added under a continuous nitrogen flow. The mixture was stirred for a 5 min and an aliquot was withdrawn. The aliquot was dissolved in sufficient amount of deuterated Chloroform and was further subjected to NMR analysis.

B.6. Synthetic procedure of 3,6-Dioxa-1,8-octanedithio-bis-carbonylimidazole

 ${\it 3,6-Dioxa-1,8-octaned ithio-bis-carbony limidazole}$

1,1'-carbonyldiimidazole (8.00 g, 49.2 mmol, 8.00 equiv.) was suspended in ethyl acetate (50.00 mL) under continuous nitrogen flow by stirring for 5 minutes before it was heated up to 65 °C. After the reaction mixture became a clear solution 3,6-Dioxa-1,8-octanedithiol (1.12 g, 1.00 mL, 6.14 mmol, 1.00 equiv.) was added dropwise under a constant N₂-flow. The mixture was stirred for 2 h at 65 °C. Subsequently, the mixture was cooled down to ambient temperature before the solvent evaporated. The residue was dissolved in deionized water (100 mL) and the aqueous phase was extracted with DCM (6 x 50 mL). The combined organic phases were washed with deionized water (3 x 50 mL) and brine (1 x 50mL) and dried over Na₂SO₄. After evaporation of the solvent, the resulting product was dried under reduced pressure at 50°C for 12 hours. **3,6-Dioxa-1,8-octanedithio-***bis***-carbonylimidazole** was obtained as an orange highly viscous liquid in a quantitative yield.

¹H NMR (400 MHz, CDCl₃): shown in Section D. Additional Data, Figure S25

¹³C NMR (100 MHz, CDCl₃): shown in Section D. Additional Data, Figure S26

B.7. Synthetic procedure of model compound (MC)

First, a 5.00 mL crimp vial was charged with 3,6-Dioxa-1,8-octanedithio-*bis*-carbonylimidazole (300 mg, 0.81 mmol, 1.00 equiv.) and a stirring bar. After purging the vessel with nitrogen for 5 minutes, dry chloroform (0.81 M), hexane-1-thiol (142 mg, 0.23 mL, 1.62 mmol, 2.05 equiv.) and 1,8-Diazabicyclo[5.4.0]undec-7-ene (247 g, 0.242 mL, 1.62 mmol, 2.00 equiv.) were sequentially added under a continuous nitrogen flow. The reaction mixture was stirred under inert atmosphere for 4 hours at ambient temperature. Sequentially, the solvent was evaporated, and the residue was redissolved in DCM (20 mL). The organic phase was washed with water (4 x 50 mL) and brine (1 x 50 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure. No further purification was performed. **MC** was obtained as a yellowish liquid and further utilized for the analysis.

¹H NMR (400 MHz, CDCl₃): shown in Section D. Additional Data, Figure S27

 $^{\rm 13}$ C NMR (100 MHz, CDCl_3): shown in Section D. Additional Data, Figure S28

Section C. Measurements and Analysis

C.1. Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectra were recorded on Bruker Avance 400 (400 MHz for ¹H and 100 MHz for ¹³C) spectrometer. Spectra were referenced on residual solvent signal according to Nudelman *et al*: 7.26 ppm for CDCl₃. Deuterated solvents were purchased from Euriso-TOP and used without further purification.

C.2. Size Exclusion Chromatography (SEC)

The apparent number average molar mass (M_n) and the molar mass distribution [Đ (dispersity) = M_w/M_n] values of the polymers were determined using a 7 Size Exclusion Chromatography (SEC) system equipped with Shimadzu LC20AD pump, Wyatt Optilab rEX refractive index detector and four PLgel 5 μ Mixed-C columns. The characterization was performed at 35 °C in THF with a flow rate of 1 mL·min-1 with a sample concentration of 2 g·L⁻¹, which was filtered over a 0.2 μ L filter prior to the measurement. The molecular weight calibration was based on sixteen narrow molecular weight linear polymethylmethacrylate standards from Polymer Laboratories.

C.3. Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR)

All IR measurements were performed on a Bruker Alpha ATR-IR Spectrometer with a range of 500 to 4000 cm⁻¹ at ambient temperature.

C.4. Differential Scanning Calorimetry (DSC)

Thermal properties were measured on a TA DSC 2500 with a heat rate of 10 K·min⁻¹ between -80 °C and 200 °C in TA Tzero sample holders. The glass transition temperature (T_g) and melting temperature (T_m) were determined in the second heating run to eliminate possible interference from the polymer's thermal history.

C.5. Thermogravimetric Analysis (TGA)

TGA measurements were carried out on the TA Instruments TGA 5500 under nitrogen atmosphere using platinum TGA sample pans and with a heating rate of 10 K min⁻¹ over a temperature range from 25 to 800 $^{\circ}$ C.

C.6. Ultraviolet-visible (UV-Vis) and Fluorescence spectroscopy

UV-vis spectra in the range of 200–800 nm and fluorescence spectra in the range of 300 to 750 nm were recorded on a fluorescence and absorbance spectrometer, Duetta, Horiba Scientific in DCM at 298 K.

Section D. Additional Data

Scheme S1 Proposed mechanism for the straightforward synthesis of polydithiocarbonates with CDI and dithiols in the presence of DBU in order to provide better understanding for the employed reaction conditions.

	Equiv. M1	Equiv. CDI	Equiv. DBU	Reaction time (h)	Reaction temp. (°C)	Number average of molar mass (<i>M</i> _n) ^a	Dispersity (Đ)ª
P1	1.00	1.05	2.00	4	a.t.	26.400 g∙mol ⁻¹	2.5
P1.1	1.00	1.05	0.10	4	a.t.	10.400 g∙mol ⁻¹	1.9
P1.2	1.00	1.05	0.01	4	a.t.	8.500 g∙mol ⁻¹	1.9
P1.3	1.00	1.05	0.00	4	a.t.	4.500 g∙mol ⁻¹	1.9

Table S1 Polymerization approaches containing different equivalents of diazabicyclo[5.4.0]undec-7-ene (DBU).

^a M_n and \mathcal{D} (M_w/M_n) were determined by SEC in tetrahydrofuran (THF) on the basic of polymethylmethacrylate (PMMA) standard.

Figure S1 SEC traces of P1 to P1.3 in THF + 0.2 % w/v BHT.

Figure S2 Left: Comparative ¹³C NMR (100 MHz, CDCl₃ (*)) of **P1**-precipitated, **P1** crude reaction mixture (RM, 2h), stochiometric mixture of DBU and imidazole, pure imidazole in additon to DBU at ambient temperature. **Right (up):** Zoom-in in the range of 165-160 ppm. **Right (down):** Zoom-in in the range of 138-120 ppm.

Figure S3 The polymerization reaction of **P1** was monitored by SEC in THF + 0.2 % w/v BHT of reaction aliquots withdrawn at 30, 90, 120 and 240 min, respectively.

Figure S4 $^{\rm 13}C$ NMR (100 MHz) of P1 in CDCl3 (*) at ambient temperature.

Elemental analysis	Polymer	Carbon (%)	Hydrogen (%)	Sulfur (%)
Theoretical	P1	47.7	6.86	36.4
Experimental	P1	49.7	6.81	37.9

 Table S2 Elemental analysis of P1.

Figure S6 2D ¹H-¹³C HSQC spectrum of P1 in CDCl₃ (*) at ambient temperature.

Figure S7 13 C NMR (100 MHz) of P2 in CDCl₃ (*) at ambient temperature.

Figure S8 2D 1 H- 1 H COSY spectrum (400 MHz) of **P2** in CDCl₃ (*) at ambient temperature.

Figure S9 2D 1 H- 13 C HSQC spectrum of P2 in CDCl₃ (*) at ambient temperature.

Figure S10 $^{\rm 13}C$ NMR (100 MHz) of P3 in CDCl3 (*) at ambient temperature.

Figure S11 2D 1 H- 1 H COSY spectrum (400 MHz) of **P3** in CDCl₃ (*) at ambient temperature.

Figure S12 2D 1 H- 13 C HSQC spectrum of P3 in CDCl₃ (*) at ambient temperature.

Scheme S2 Proposed mechanism for the straightforward synthesis of sulfur-rich polydithiocarbonates with CDI and dithiols in the presence of DBU and elemental sulfur.

Figure S13 ¹H NMR (400 MHz) of P4 in CDCl₃ (*) at ambient temperature.

Figure S14¹³C NMR (100 MHz) of P4 in CDCl₃ (*) at ambient temperature.

Figure S15 2D ¹H-¹H COSY spectrum (400 MHz) of P4 in CDCl₃ (*) at ambient temperature.

Figure S16 2D 1 H- 13 C HSQC spectrum of P4 in CDCl₃ (*) at ambient temperature.

Figure S17 Comparative ATR-IR spectrum (Bruker Alpha ATR-IR) of **P1** and **P4** in the range of 500 to 4000 cm⁻¹.

Table S3 Experimental elemental analysis of P1 and P4.

Elemental analysis	Polymer	Carbon (%)	Hydrogen (%)	Sulfur (%)
Experimental	P1	49.7	6.86	37.9
Experimental	P4	49.7	8.01	42.3

Figure S18 Optical appearance of step growth polymers **P1** (left), **P2** (inside left), **P3** (inside right) and **P4** (right) under natural and UV (365 nm) light.

Figure S19 UV-vis absorption traces of **P1** at different concentrations (red: 1.00 mg·mL⁻¹, black: 80.0 mg·mL⁻¹) in DCM (298 K).

Figure S20 Fluorescence emission spectra of **P1** (80 mg·mL⁻¹) at various excitation wavelengths, i.e., 310 nm to 430 nm.

Figure S21 UV-vis absorption trace of P3 (0.0037 mg·mL⁻¹) in DCM (298 K).

Figure S22 Fluorescence emission spectra of P3 (39.5 mg·mL⁻¹) at an excitation wavelength of 340 nm.

Figure S23 Fluorescence emission spectra of P4 (39.5 mg·mL⁻¹) at an excitation wavelength of 340 nm.

Figure S24 Schematic representation of dithiocarbonate (-S-C(O)-S-) cluster formation.

Figure S25 ¹H NMR (400 MHz) of **3,6-Dioxa-1,8-octanedithio**-*bis*-carbonylimidazole in CDCl₃ (*) at ambient temperature.

Figure S26 ¹³C NMR (100 MHz) of **3,6-Dioxa-1,8-octanedithio**-*bis*-carbonylimidazole in $CDCl_3$ (*) at ambient temperature.

Figure S27 ^1H NMR (400 MHz) of MC in CDCl3 (*) at ambient temperature.

Figure S28 $^{\rm 13}{\rm C}$ NMR (100 MHz) of MC in CDCl3 (*) at ambient temperature.