Electronic Supplementary Information (ESI)

Facile Strategy to Incorporate Amidoxime Groups into Elastomers toward Self-Crosslinking and Self-Reinforcement

Chenru Tian, Haoran Feng, Yuchen Qiu, Ganggang Zhang*, Tianwei Tan and Liqun Zhang*

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China

No. 15 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
*Corresponding authors:
E-mail: zhanglq@mail.buct.edu.cn, zhang-gang-gang@qq.com

Number of pages: 9
Number of figures: 11
Number of tables: $\mathbf{3}$

Equilibrium swelling experiments.

Total crosslinking density was determined by equilibrium swelling experiments. The vulcanizates were immersed in toluene at room temperature for 72 h . Then, the samples were removed from the solvent, and immediately weighed after wiping off the surface residual toluene, and then dried in a vacuum oven at $60^{\circ} \mathrm{C}$ until a constant weight. The sol fraction is calculated according to $\left(\mathrm{m}_{0}-\mathrm{m}_{2}\right) / \mathrm{m}_{0}$, and the swelling ratio is defined as $\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) / \mathrm{m}_{2}$, where m_{0} is the weight of the sample before swelling, and m_{1} and m_{2} are the sample masses before and after drying, respectively. The crosslinking density was determined by the classical Flory-Rehner equation.

$$
V_{e}=-\frac{\ln \left(1-V_{r}\right)+V_{r}+\chi V_{r}^{2}}{\mathrm{~V}_{\mathrm{s}}\left(V_{r}^{\frac{1}{3}}-\frac{V_{r}}{2}\right)}
$$

V_{r} is the volume fraction of rubber in the swollen gel, V_{s} is the molar volume of the solvent ($106.5 \mathrm{~cm}^{3} / \mathrm{mol}$ for toluene), and χ is the Flory-Huggins solvent-polymer interaction parameter and is calculated as below:
$\chi=0.487+0.228 * V_{r}$
V_{r} was calculated according to the equation below:
$V_{r}=-\frac{\left(m_{2}-m_{0} \varphi\right) / \rho_{r}}{\frac{\left(m_{2}-m_{0} \varphi\right)}{\rho_{r}}+\frac{\left(m_{1}-m_{2}\right)}{\rho_{s}}}$
φ is the weight fraction of the insoluble components (in this system it should be considered as 0), and ${ }^{\rho_{r}}$ and ${ }^{\rho_{s}}$ are the density of rubber and solvent, respectively.

Covalent crosslinking density was determined by equilibrium swelling experiments as well. The vulcanizates were immersed in dichloroacetic acid/toluene solution (volume ratio 1:4) at room temperature for 72 h (replace the solution every 24 hours). ${ }^{1}$ The subsequent processing and calculation methods are consistent with total crosslinking density.

Table S1. Mechanical properties of virgin NBR and AO-NBR

Samples	Stress at $100 \%(\mathrm{MPa})$	Stress at 300% (MPa)	Tensile Stress (MPa)	Elongation at break (\%)
Virgin NBR	0.5	0.4	0.5	1825
AO-NBR-2	0.7	0.7	1.6	1818
AO-NBR-5	0.9	1.0	2.5	1152
AO-NBR-10	1.3	2.1	5.3	650
AO-NBR-15	1.3	2.4	5.6	608

Fig S1. ${ }^{1} \mathrm{H}$ NMR spectrum of BAO.

Fig S2. ${ }^{1} \mathrm{H}$ NMR spectrum of BN

Fig S3. ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of BAO and BN at $160^{\circ} \mathrm{C}$ for 2 h .

Fig S4. ${ }^{13} \mathrm{C}$ NMR spectrum of BAO.

Fig S5. ${ }^{13} \mathrm{C}$ NMR spectrum of BN

Fig S6. ${ }^{13} \mathrm{C}$ NMR spectrum of the mixture of BAO and BN at $160{ }^{\circ} \mathrm{C}$ for 2 h .

Fig S7. ${ }^{1} \mathrm{H}$ NMR spectrum of BAO at $160{ }^{\circ} \mathrm{C}$ for 2 h .

Fig S8. ${ }^{13} \mathrm{C}$ NMR spectrum of BAO at $160{ }^{\circ} \mathrm{C}$ for 2 h .

Fig S9. mass spectrum of the mixture of BAO and BN at $160^{\circ} \mathrm{C}$ for 2 h

Scheme S1. Schematic illustration of the chemical reaction between BAO and BN.

Table S2. Mechanical properties of AO-NBR- d with different amidoxime concentration and molding time

Samples	Stress at 100\% (MPa)	Stress at 300\% (MPa)	Tensile Strength (MPa)	Elongation at break (\%)
AO-NBR-5- $d-30$ min	1.9	5.4	5.9	326
D-AO-NBR-10- $d-30$ min	6.6	-	20.7	259
D-AO-NBR-15- $d-30$ min	14.4	-	$16.8(\mathrm{Yield})$	133
D-AO-NBR-10- $d-20$ min	5.2	-	16.6	270
D-AO-NBR-10- $d-40$ min	8.7	-	16.4	173

Fig. S10. Calculated hysteresis energy through first tensile cycle with AO-NBR- d, (a) with different molding time, (b) with various amidoxime concentration.

Table S3. Mechanical properties of T-AO-NBR nanocomposites with different amidoxime degree and $\mathrm{Zn}(\mathrm{Ac})_{2}$ content

	Stress at 100% (MPa)	Stress at 300% (MPa)	Tensile Sampless (MPa)	Elongation at break $(\%)$
AO-NBR- $t-0.5 \mathrm{Zn}$	2.9	7.0	19.9	605
AO-NBR- $t-1 \mathrm{Zn}$	3.1	8.6	25.2	579
AO-NBR- $t-2 \mathrm{Zn}$	6.0	15.2	28.3	447
AO-NBR-5-t-Zn	3.2	8.8	12.4	408
AO-NBR- $15-t-\mathrm{Zn}$	-	-	Yield (33.1)	70

Fig. S11. Calculated hysteresis energy through first tensile cycle with AO-NBR- $t-\mathrm{Zn}$ (a) with different Zn contents, (b) with various amidoxime concentration; (c) Hysteresis energy comparison between AO-NBR- d and AO-NBR- $t-\mathrm{Zn}$.

1. J. Liu, S. Wang, Z. Tang, J. Huang, B. Guo and G. Huang, Macromolecules, 2016, 49, 8593-8604.
