Supporting Information for Manuscript Entitled with

One-Component Phosphonium Borane Lewis Pair Serves

as Dual Initiator and Catalyst in the Ring-Opening

Alternating Copolymerization of Anhydrides and Epoxides

Jiwen Hui^a, Xiaowu Wang^{a, *}, Xiaoqian Yao^{c, *}, Zhibo Li^{a,b,*}

^a College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, China, 266042

^b College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, China, 266042

^c CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China, 100190

Tables of contents

1 Ex	xperimenta	l sections	•••••					
2 X	RD							2.
3 S	ynthesis j	procedure						3.
4 Ge	eneral proc	edure for	synthesis of po	olymer .				
5 Ki	netics Pro	cedures						
6	$^{1}\mathrm{H}$	and	$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$	Ν	MR	spectra	of	resulted
poly	(epoxide-a	<i>alt</i> -anhydr	ride)					42
7	Sele	ected	GPC	trac	es	of	the	obtained
poly	(epoxide-a	<i>alt</i> -anhydr	ride)					46
8 poly	Maldi- /(CHO- <i>alt</i> -	TOF ·PA)	analysis	of	low	molecula	ır weig	ght of 50
9 Cı	ystal data	and struct	ture refinement	t for cata	alyst prec	ursors		56
10 0	Computatio	on details						68
11	Cartesian	coordinat	es for the op	otimized	structur	es		70
Refe	erences							

1. Experimental sections

Chemicals

Unless otherwise stated, all chemicals are used without further purification. Propylene oxide (PO), acetonitrile, ethanol. ethyl acetate. chloroform and toluene were purchased from Sinopharm Chemical Reagent Co., Ltd. Sodium hydride (NaH), calcium hydride (CaH₂) and deuterated solvents were purchased from Macklin Co., Ltd. Cyclohexene oxide 3-bromopropene 4-Bromo-1-butene (CHO), 6-Bromo-1-hexene, 5-Bromo-1-pentene, 5-iodo-1-pentene, 9-borabicyclo[3.3.1]nonane (9-BBN) were purchased from Energy Chemical Co., Ltd. Phthalic anhydride (PA), maleic anhydride (MA) and succinic anhydride (SA) were purchased from Energy Chemical Co., Ltd. Tetrahydrofuran (THF), n-hexane were purchased as SuperDry solvent from Energy Chemical Co., Ltd. Chloroform, CDCl₃, PO and CHO were dried over CaH₂ for 48 h, distilled and stored under nitrogen atmosphere. PA was first dissolved in acetic anhydride and stirred at 120 °C overnight before recrystallization at room temperature and further purified by sublimation under high vacuum before use. MA and SA were treated by sublimation under high vacuum before use. Amberlite(R) IRA-400 (CI) resin was purchased from Energy Chemical Co., and washed with methanol before using. The ammonium borane catalysts R1-R3, B1 were synthesized according to the literature.¹

Methods

NMR

Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker AVANCE NEO 400 MHz NMR spectrometer (¹H NMR 400 MHz, ¹³C NMR 100 MHz, 128 MHz ¹¹B NMR, 162 MHz ³¹P NMR) at 298 K. ¹H and ¹³C NMR Chemical shifts were reported in δ (ppm) with the residual deuterated solvent peak as reference [¹H: TMS in CDCl₃ = 0 ppm; ¹³C: CDCl₃ = 77.16 ppm; ¹¹B: BF₃*Et₂O (external standard) = 0 ppm, ³¹P: 85% H₃PO₄ (external standards) =

1

0 ppm]. Data are reported as follows: Chemical shift in ppm, multiplicity (s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, br = broad signals, etc.), coupling constant *J* in Hz, integration, and (where applicable) interpretation. The substitution pattern of phenyl group and assignments of phenyl carbon in ¹³C NMR were named as follows: ortho-(*o*-Ph), meta- (*m*-Ph), para- (*p*-Ph) and ipso- (*i*-Ph).

MALDI-ToF

Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analyses were conducted on a Bruker Microflex LRF MS spectrometer equipped with a 337 nm nitrogen laser operating at a positive ion, linear mode (modified according to experiments). The polymer samples (10 mg mL⁻¹), trans -2[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB, 25 mg mL⁻¹) and CF₃COONa (5 mg mL⁻¹) were dissolved in THF and mixed in a volume ratio of 20:5:5 (Sample concentration, matrix type, ionic salt and volume ratio are modified according to experimental conditions).

GPC

Gel permeation chromatography (GPC) experiments were performed on an Agilent HPLC system equipped with a model 1260 Hip degasser, a model 1260 Iso pump and a model 1260 differential refractometer detector with using THF as mobile phase at a flow rate of 1.0 mL min⁻¹ at 40 °C. One PLgel 5 μ m guard column and three Mz-Gel SDplus columns (10³Å,10⁴Å and 10⁵Å, linear range of M_W = 1000 – 2*10⁶ Da) were connected in series. The molecular weight and dispersity were calculated using 6 polystyrene standards with narrow molecular weight distribution as references. The sample concentration used for GPC analyses was 5-10 mg mL⁻¹.

XRD

X-ray diffraction (XRD) was carried out to measure the structure of single crystals. The data of Co1 and Fe1 was collected on Super Nova diffractometer with Mo K-alpha X-ray source (λ = 0.71073 Å) at 150 K.

The collected data were solved using the SUPERFLIP72 program and refined by the SHELX-97 and OLEX274 programs.

XPS

The X-ray photoelectron spectroscopy (XPS) was measured with a Thermo Scientific ESCALAB 250Xi spectrometer (AI K α radiation, hv = 1486.6 eV) equipped with an electron flood gun. The carbon 1s binding energy of graphite in the carbon tape (284.6 eV) was used to calibrate the binding energy. All spectra from XPS were analyzed by using Thermo Scientific Advantage Data System software

Synthesis procedure

Synthesis of quaternary phosphonium salt L1

Triphenylphosphine (0.262 g, 1mmol, 1 equiv.) and 3-bromopropene (0.13 mL, 1.5 mmol, 1.5 equiv.) were dissolved in toluene (5 m L) and heated at 70 °C for 4 h. Monitoring the ³¹P NMR spectroscopy revealed full conversion. The reaction mixture was concentrated in vacuo to afford the crude product that was further purified by washing with Et₂O for three times. The white solid was collected by vacuum filtration and was dried in vacuo for 12 h at 40 °C. The isolated yield was 92% (353.0 mg, 0.92 mmol). ¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.88 (m, 6H, *o*-Ph^H), 7.79 (m, 3H, *p*-Ph^H), 7.69 (m, 6H, *m*-Ph^H), 5.69 (m, 2H, =CH₂), 5.40 (m, 1H, CH=), 4.89 (dd, ³J = 15.5, 6.9 Hz, 2H, CH₂). ¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 135.1 (d, ⁴J_{PC} = 2.9 Hz, *p*-Ph^C), 133.9 (d, ³J_{PC} = 9.9 Hz, *m*-Ph^C), 130.4 (d, ²J_{PC} = 12.8 Hz, *o*-Ph^C), 126.2 (d, ²J_{PC} = 13.1 Hz, =CH), 123.0 (d, ³J_{PC} = 9.6 Hz, CH₂=), 117.8 (d, ¹J_{PC} = 85.9 Hz, *i*-Ph^C), 28.8 (d, ¹J_{PC} = 50.1 Hz, CH₂). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 21.2 (s).

Figure S3. ³¹P{¹H} NMR spectrum of L1 (162 MHz, CDCl₃, 298 K) Synthesis of quaternary ammonium salt L2

Triphenylphosphine (0.262 g, 1 mmol, 1 equiv.) and 4-bromo-1-butene (0.15 mL, 1.5mmol, 1.5 equiv.) were dissolved in toluene (5 mL) and heated at 70 °C for 48 h. Monitoring the ³¹P NMR spectroscopy revealed full conversion. The reaction mixture was concentrated to half and ether was added with three times of the original volume. Then, the mixture was put into the refrigerator at -30 °C overnight. The white precipitates were quickly filtered and washed with cold ether three times. The collected white solid was dried in vacuum at 40 °C for 12 h. The isolated yield was 94% (374.0 mg, 0.94 mmol). ¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.90 (m, 6H, *o*-Ph^H), 7.79 (m, 3H, *p*-Ph^H), 7.70 (m, 6H, *m*-Ph^H), 6.02 (m, 1H, CH=), 5.02 (m, 2H, =CH₂), 3.99 (m, 2H, allyl-CH₂), 2.45 (m, 2H, PCH₂). ¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 135.2 (d, ⁴J_{PC} = 2.9 Hz, *p*-Ph^C), 134.9 (d, ¹J_{PC} = 15.0 Hz, *i*-Ph^C), 133.7 (d, ³J_{PC} =

10.1 Hz, *m*-Ph^C), 130.6 (d, ${}^{2}J_{PC}$ = 12.7 Hz, *o*-Ph^C), 118.5 (s, CH₂=), 117.5 (d, ${}^{3}J_{PC}$ = 16.9 Hz, =CH), 26.6 (d, ${}^{2}J_{PC}$ = 3.5 Hz, CH₂), 22.40 (d, ${}^{1}J_{PC}$ = 49.8 Hz, PCH₂). ${}^{31}P{}^{1}H$ NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.5 (s). 21.2 (s).

6

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

Figure S6. ³¹P{¹H} NMR spectrum of L2 (162 MHz, CDCl₃, 298 K) Synthesis of quaternary ammonium salts L3

Tripheylphosphine (0.262 g, 1 mmol, 1 equiv.) and 5-bromo-1-pentene (0.18 mL, 1.5 mmol, 1.5 equiv.) were dissolved in toluene (5mL) and heated at 70 °C for 48 h. Monitoring the ³¹P NMR spectroscopy revealed full conversion. The reaction mixture was added with ether three times of the original volume. The mixture was put into the refrigerator at -30°C overnight. The white soild was filtered through vacuum while it was cold and washed with ether three times. The collected white solid was dried in vacuum at 40°C for 12 h. The isolated yield was 92% (379.0 mg, 0.92 mmol).

¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.87 (m, 6H, *o*-Ph^H), 7.78 (m, 3H, *p*-Ph^H), 7.69 (m, 6H, *m*-Ph^H), 5.71 (m, 1H, CH=), 5.01 (m, 2H, =CH₂), 3.91 (m, 2H, allyl-CH₂), 2.46 (m, 2H, PCH₂), 1.73 (m, 2H, CH₂).

¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 136.3 (s, *p*-Ph^C), 135.1 (d, ⁴J_{PC} = 3.2 Hz, =CH), 133.6 (d, ³J_{PC} = 10.1 Hz, *m*-Ph^C), 130.6 (d, ²J_{PC} = 12.8 Hz, *o*-Ph^C), 118.6 (s, CH₂=), 117.4 (d, ¹J_{PC} = 75.3 Hz, *i*-Ph^C), 33.8 (d, ²J_{PC} = 16.5 Hz, CH₂), 22.1 (d, ¹J_{PC} = 37.9 Hz, PCH₂), 21.8 (d, ³J_{PC} = 8.8 Hz, CH₂). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.7 (s).

Figure S7. ¹H NMR spectrum of L3 (400 MHz, CDCl₃, 298 K)

Figure S9. ³¹P{¹H} NMR spectrum of L3 (162 MHz, CDCl₃, 298 K) Synthesis of quaternary ammonium salts L4

Triphenylphosphine (0.262 g, 1 mmol, 1 equiv.) and 6-bromo-1-hexene (0.2 mL, 1.5 mmol, 1.5 equiv.) were dissolved in toluene (5 mL) and heated at 70 °C for 48 h. Monitoring the ³¹P NMR spectroscopy revealed full conversion. The reaction mixture was added with ether three times of the original volume and put into the refrigerator at -30°C overnight. The white soild was filtered through vacuum while it was cold and washed with ether three times. The collected white solid was dried in vacuum at 40°C for 12 h. The isolated yield was 91% (387.0 mg, 0.91 mmol).

¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.87 (m, 6H, *o*-Ph^H), 7.78 (m, 3H, *p*-Ph^H), 7.69 (m, 6H, *m*-Ph^H), 5.68 (m, 1H, CH=), 4.89 (m, 2H, =CH₂), 3.90 (m, 2H, allyl-CH₂), 2.07 (q, *J* = 7.0 Hz, 2H, PCH₂), 1.78 (m, 2H, CH₂), 1.61 (m, 2H, CH₂). ¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 137.6 (s, *p*-Ph^C), 135.1 (d, ⁵*J*_{PC} = 3.0 Hz, =CH), 133.6 (d, ³*J*_{PC} = 10.0 Hz, *m*-Ph^C), 130.5 (d, ²*J*_{PC} = 12.5 Hz, *o*-Ph^C), 118.2 (d, ¹*J*_{PC} = 75.3 Hz, *i*-Ph^C), 115.3 (s, CH₂=), 32.9 (s, ^{=CH}CH₂), 29.2 (d, ²*J*_{PC} = 16.0 Hz, CH₂), 22.6 (d, ¹*J*_{PC} = 50.1 Hz, PCH₂), 21.8 (d, ³*J*_{PC} = 4.3 Hz, CH₂). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.6 (s).

Figure S11. $^{13}\text{C}\{^{1}\text{H}\}$ spectrum of L4 (100 MHz, CDCl_3, 298 K)

^{fl (ppm)} Figure S12. ³¹P{¹H} NMR spectrum of **L4** (162 MHz, CDCl₃, 298 K)

24.

Triphenylphosphine (0.089 g, 0.34 mmol, 1 equiv.) and 5-iodo-1-pentene (0.065 mL, 0.51 mmol, 1.5 equiv.) were dissolved in acetonitrile (3 mL) and heated at 70 °C for 48 h. Monitoring the ³¹P NMR spectroscopy revealed full conversion. The reaction mixture was added with ether three times of the original volume and put into the refrigerator at -30°C overnight. The white soild was filtered through vacuum while it was cold and washed with ether three times. The collected white solid was dried in vacuum at 40°C for 12 h. The isolated yield was 97% (151.2 mg, 0.33 mmol).

¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.84 (m, 9H, *o*-Ph^H and *p*-Ph^H), 7.71 (m, 6H, *m*-Ph^H), 5.70 (m, 1H, CH=), 5.03 (m, 2H, =CH₂), 3.76 (m, 2H, allyl-CH₂), 2.45 (q, *J* = 7.0 Hz, 2H, PCH₂), 1.74 (m, 2H, CH₂). ¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 136.2 (s, *p*-Ph^C), 135.3 (d, ⁴*J*_{PC} = 2.9 Hz, =CH), 133.7 (d, ³*J*_{PC} = 10.1 Hz, *m*-Ph^C), 130.7 (d, ²*J*_{PC} = 12.7 Hz, *o*-Ph^C), 117.3 (s, CH₂=), 118.0 (d, ¹*J*_{PC} = 86.3 Hz, *i*-Ph^C), 33.8 (d, ²*J*_{PC} = 16.3 Hz, CH₂), 22.4 (d, ¹*J*_{PC} = 51.0 Hz, PCH₂), 21.9 (d, ³*J*_{PC} = 4.1 Hz, CH₂). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.5 (s).

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

Figure S15. ³¹P{¹H} NMR spectrum of L5 (162 MHz, CDCl₃, 298 K)

Synthesis of quaternary ammonium salts L6

L3 (300 mg, 0.8 mmol) was dissolved in methanol and eluted through a column containing Amberlite IRA-400 (Cl) ion-exchange resin (3 g) at a

drop rate of 1 mL/min. Solvent was removed and product was dried in vacuo at 50 °C to yield a white solid in quantitative yield (264.0 mg, 0.72 mmol). The complete exchange was confirmed by X-ray photoelectron spectroscopy. Only chloride was detected and no detection of Br was observed.

¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.88 (m, 6H, *o*-Ph^H), 7.78 (m, 3H, *p*-Ph^H), 7.70 (m, 6H, *m*-Ph^H), 5.69 (m, 1H, CH=), 5.00 (m, 2H, =CH₂), 3.97 (m, 2H, allyl-CH₂), 2.42 (m, 2H, PCH₂), 1.72 (m, 2H, CH₂). ¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 136.5 (s, *p*-Ph^C), 135.1 (d, ⁴J_{PC} = 3.0 Hz, =CH), 133.8 (d, ³J_{PC} = 10.0 Hz, *m*-Ph^C), 130.6 (d, ²J_{PC} = 12.6 Hz, *o*-Ph^C), 117.0 (s, CH₂=), 118.5 (d, ¹J_{PC} = 85.9 Hz, *i*-Ph^C), 33.9 (d, ²J_{PC} = 16.4 Hz, CH₂), 22.1 (d, ³J_{PC} = 7.8 Hz, CH₂), 21.8 (d, ¹J_{PC} = 38.8 Hz, PCH₂). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.8 (s).

Figure S17. $^{13}\text{C}\{^{1}\text{H}\}$ spectrum of L6 (100 MHz, CDCl_3, 298 K)

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 fl (ppm)

Figure S18. ${}^{31}P{}^{1}H$ NMR spectrum of L6 (162 MHz, CDCl₃, 298 K)

Synthesis of organoboron catalysts

Synthesis of C3 phosphonium borane catalyst 1

To a teflon valve sealed Schlenk vessel, C3 phosphonium salt **L1** (192 mg, 0.5 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane (9-BBN) (82.0 mg, 0.675 mmol, 1.35 equiv.) was charged in a glovebox. 8 mL CHCl₃ was added and the solution was heated at 80 °C for 24h. Monitoring the ¹H NMR spectroscopy revealed full conversion. The reaction mixture was concentrated in vacuo to afford the crude solid product that was further purified by washing it with n-hexane three times. The white solid product was dried for 12 h in vacuo at 40 °C to give the product as a white powder. The isolated yield was 92% (235.0 mg, 0.46 mmol). ¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.90 (m, 6H, *o*-Ph^H), 7.78 (m,

3H, *p*-Ph^H), 7.69 (m, 6H, *m*-Ph^H), 3.93 (m, 2H, PCH₂, 1.82-1.53 (m, 15H, bicyclo-H), 1.37, 1.25 (m, 2H, CH₂), 1.15 (m, 2H, BCH₂). ¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 135.1 (d, ⁴*J*_{PC} = 2.9 Hz, *p*-Ph^C), 133.8 (d, ³*J*_{PC} = 10.0 Hz, *m*-Ph^C), 130.6 (d, ²*J*_{PC} = 12.4 Hz, *o*-Ph^C), 118.6 (d, ¹*J*_{PC} = 85.4 Hz, *i*-Ph^C), 33.5 (s, bicyclo-C), 33.1 (s, bicyclo-C). 30.9 (br, BCH₂), 25.3 (d, ¹*J*_{PC} = 47.4 Hz, PCH₂), 23.2 (s, bicyclo-C), 23.1 (s, bicyclo-C), 18.2 (d, ²*J*_{PC} = 4.7 Hz, CH₂). ¹¹B{¹H}NMR (128 MHz, CDCl₃, 298 K) δ (ppm) = 86.6 (br), 59.1 (br). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.0 (s). **Elemental analysis**: calc. for C₂₉H₃₅BBrP⁺ (504.1747 g/mol): C, 68.93; H, 6.98. Found: C, 68.77; H, 7.05. **Mass Spectrometry (ESI-HRMS):** calculated for C₂₉H₃₅BP⁺: 425.2564; found: 425.2569.

Figure S19. ¹H NMR spectrum of **1** (400 MHz, CDCl₃, 298 K)

Figure S21. ¹¹B{¹H} NMR spectrum of **1** (128 MHz, CDCl₃, 298 K)

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

Figure S22. ³¹P{¹H} NMR spectrum of **1** (162 MHz, CDCl₃, 298 K) **Synthesis of C4 phosphonium borane catalyst 2**

- 24.

To a teflon valve sealed Schlenk vessel, C4 phosphonium salt **L2** (0.250 g, 0.63 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane (9-BBN) (80.7 mg , 0.66 mmol, 1.05 equiv.) was charged in a glovebox. 8 mL CHCl₃ was added and the solution was heated at 80 °C for 24h. Monitoring the

¹H NMR spectroscopy revealed full conversion. The reaction mixture was concentrated in vacuo to afford the crude solid product that was further purified by washing it with n-hexane three times. The white solid product was dried for 12 h in vacuo at 40 °C to give the product as a white powder. The isolated yield was 95% (311.0 mg, 0.60 mmol). ¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.87 (m, 6H, *o*-Ph^H), 7.78 (m, 3H, *p*-Ph^H), 7.70 (m, 6H, *m*-Ph^H), 3.86 (m, 2H, PCH₂, 1.84-1.54 (m, 15H, bicyclo-H), 1.54 (m, 2H, PCH₂**CH**₂), 1.35 (m, 2H, BCH₂), 1.11 (m, 2H, BCH₂**CH**₂). ¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 135.0 (d, ⁴*J*_{PC} =

2.8 Hz, *p*-Ph^C), 133.7 (d, ${}^{3}J_{PC}$ = 10.0 Hz, *m*-Ph^C), 130.5 (d, ${}^{2}J_{PC}$ = 12.5 Hz, *o*-Ph^C), 118.5 (d, ${}^{1}J_{PC}$ = 85.8 Hz, *i*-Ph^C), 33.2 (s, bicyclo-C), 33.1 (s, bicyclo-C). 30.9 (br, BCH₂), 27.5 (m, CH₂), 25.7 (d, ${}^{1}J_{PC}$ = 16.1 Hz, PCH₂), 25.5 (d, ${}^{2}J_{PC}$ = 4.7 Hz, CH₂), 23.2 (s, bicyclo-C), 22.6 (s, bicyclo-C). ${}^{11}B{}^{1}H$ } NMR (128 MHz, CDCl₃, 298 K) δ (ppm) = 86.5 (br), 58.5 (br). ${}^{31}P{}^{1}H$ } NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.5 (s). **Elemental analysis**: calc. for C₃₀H₃₇BBrP (518.1909 g/mol): C, 69.39; H, 7.18. Found: C, 69.51; H, 6.98. **Mass Spectrometry (ESI-HRMS):** calculated for C₃₀H₃₇BP⁺: 439.2720; found: 439.2714.

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 fl (ppm)

Figure S26. ³¹P{¹H} NMR spectrum of **2** (162 MHz, CDCl₃, 298 K) Synthesis of C5 phosphonium borane catalyst 3

To a teflon valve sealed Schlenk vessel, C5 phosphonium salt **L3** (102.8 mg, 0.25 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane (9-BBN) (32 mg, 0.263 mmol, 1.05 equiv.) was charged in a glovebox. 8 mL CHCl₃ was added and the solution was heated at 80 °C for 24h. Monitoring the ¹H NMR spectroscopy revealed full conversion. The reaction mixture was concentrated in vacuo to afford the crude solid product that was further purified by washing it with n-hexane three times. The white solid product was dried for 12 h in vacuo at 40 °C to give the product as a white powder. The isolated yield was 92% (122.6 mg, 0.23 mmol). ¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.89 (m, 6H, *o*-Ph^H), 7.79 (m, 3H, *p*-Ph^H), 7.70 (m, 6H, *m*-Ph^H), 3.88 (m, 2H, PCH₂, 1.79-1.60 (m, 15H,

bicyclo-H), 1.68 (m, 2H, PCH₂CH₂), 1.46 (m, 2H, BCH₂), 1.29 (m, 2H, PCH₂CH₂CH₂), 1.15 (m, 2H, BCH₂CH₂). ¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 135.1 (d, ⁴*J*_{PC} = 3.0 Hz, *p*-Ph^C), 133.7 (d, ³*J*_{PC} = 10.0 Hz, *m*-Ph^C), 130.6 (d, ²*J*_{PC} = 12.6 Hz, *o*-Ph^C), 118.4 (d, ¹*J*_{PC} = 85.8 Hz, *i*-Ph^C), 33.6 (d, *J* = 15.1 Hz, CH₂), 33.1 (s, bicyclo-C), 31.0 (br, BCH₂), 27.4 (d, *J* = 9.5 Hz, CH₂), 27.6 (s, bicyclo-C), 24.2 (s, bicyclo-C), 23.2 (s, bicyclo-C), 22.7 (d, CH₂), 22.6 (d, ¹*J*_{PC} = 9.7 Hz, PCH₂). ¹¹B{¹H} NMR (128 MHz, CDCl₃, 298 K) δ (ppm) = 87.8 (br), 58.0 (br). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.6 (s). **Elemental analysis**: calc. for C₃₁H₃₉BBrP (532.2066 g/mol): C, 69.81; H, 7.37. Found: C, 69.75; H, 7.30. **Mass Spectrometry (ESI-HRMS):** calculated for C₃₁H₃₉BP: 453.2877; found: 453.2871.

Figure S27. ¹H NMR spectrum of **3** (400 MHz, CDCl₃, 298 K)

Figure S29. ¹¹B{¹H} NMR spectrum of **3** (128 MHz, CDCl₃, 298 K)

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 fl (ppm)

Figure S30. ³¹P{¹H} NMR spectrum of **3** (162 MHz, CDCl₃, 298 K)

Synthesis of C6 phosphonium borane catalyst 4

To a teflon valve sealed Schlenk vessel, C6 phosphonium salt **L4** (102.8 mg, 0.25 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane (9-BBN) (45.8 mg, 0.375 mmol, 1.5 equiv.) was charged in a glovebox. 8 mL CHCl₃ was added and the solution was heated at 80 °C for 24h. Monitoring the ¹H NMR spectroscopy revealed full conversion. The reaction mixture was concentrated in vacuo to afford the crude solid product that was further purified by washing it with n-hexane three times. The white solid product was dried for 12 h in vacuo at 40 °C to give the product as a white powder. The isolated yield was 92% (127.0 mg, 0.23 mmol). ¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.88 (m, 6H, *o*-Ph^H), 7.79 (m, 3H, *p*-Ph^H), 7.70 (m, 6H, *m*-Ph^H), 3.88 (m, 2H, PCH₂, 1.81-1.61 (m, 15H,

bicyclo-H), 1.38 (m, PCH₂CH₂), 1.28 (m, PCH₂CH₂CH₂), 1.15 (m, 2H, BCH₂), 1.15 (m, 2H, BCH₂CH₂). ¹³C{¹H}(100 MHz, CDCI₃, 298 K) δ (ppm) = 135.1 (d, ⁴*J*_{PC} = 2.9 Hz, *p*-Ph^C), 133.8 (d, ³*J*_{PC} = 10.0 Hz, *m*-Ph^C), 130.6 (d, ²*J*_{PC} = 12.6 Hz, *o*-Ph^C), 118.5 (d, ¹*J*_{PC} = 85.8 Hz, *i*-Ph^C), 33.3 (s, bicyclo-C), 33.2 (s, bicyclo-C), 32.4 (s, CH₂), 31.0 (br, BCH₂), 30.4 (d, *J* = 15.4 Hz, CH₂) 27.4 (d, *J* = 7.7 Hz, CH₂), 27.6 (s, bicyclo-C), 24.0 (s, bicyclo-C), 23.3 (s, bicyclo-C), 23.2 (d, CH₂), 22.7 (d, ¹*J*_{PC} = 9.7 Hz, PCH₂). ¹¹B{¹H} NMR (128 MHz, CDCI₃, 298 K) δ (ppm) = 88.0 (br), 58.1(br). ³¹P{¹H} NMR (162 MHz, CDCI₃, 298 K) δ (ppm) = 24.5 (s). **Elemental analysis**: calc. for C₃₂H₄₁BBrP (546.2228 g/mol): C, 70.22; H, 7.55. Found: C, 70.10; H, 7.30. **Mass Spectrometry (ESI-HRMS):** calculated for C₃₂H₄₁BP: 467.3033; found: 467.3027.

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 fl (ppm) 150 130 110 90 70 50 -30

Figure S34. ³¹P{¹H} NMR spectrum of **4** (162 MHz, CDCl₃, 298 K)

Synthesis of C6 phosphonium borane catalyst 5

To a teflon valve sealed Schlenk vessel, C5 phosphonium salt L5 (366 mg, 0.8 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane (9-BBN) (102.5 mg, 0.84 mmol, 1.05 equiv.) was charged in a glovebox. 10 mL CHCl₃ was added and the solution was heated at 80 °C for 24 h. Monitoring the ¹H NMR spectroscopy revealed full conversion. The reaction mixture was concentrated in vacuo to afford the crude solid product that was further purified by washing it with n-hexane three times. The white solid product was dried for 12 h in vacuo at 40 °C to give the product as a white powder. The isolated yield was 93% (431.0 mg, 0.74 mmol). ¹H

- 24.62

NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.82 (m, 9H, *o*-Ph^H and *p*-Ph^H), 7.71 (m, 6H, *m*-Ph^H), 3.73 (m, 2H, PCH₂), 1.80-1.61 (m, 18H, bicyclo-H and CH₂), 1.48 (m, 2H, PCH₂CH₂), 1.29 (m, 2H, BCH₂), 1.15 (m, 2H, B CH₂CH₂). ¹¹B{¹H} NMR (128 MHz, CDCl₃, 298 K) δ (ppm) = 86.8 (br). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.6 (s). ¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 135.2 (d, ⁴*J*_{PC} = 3.0 Hz, *p*-Ph^C), 133.8 (d, ³*J*_{PC} = 10.1 Hz, *m*-Ph^C), 130.7 (d, ²*J*_{PC} = 12.5 Hz, *o*-Ph^C), 118.2 (d, ¹*J*_{PC} = 85.9 Hz, *i*-Ph^C), 33.7 (d, ²*J*_{PC} = 15.1 Hz, CH₂), 33.1 (s, bicyclo-C), 31.0 (br, BCH₂), 27.6 (CH₂), 24.2 (s, bicyclo-C), 23.3 (d, ¹*J*_{PC} = 50.0 Hz, PCH₂), 23.2 (s, bicyclo-C), 22.6 (d, ³*J*_{PC} = 4.5 Hz, CH₂). ¹¹B{¹H} NMR (128 MHz, CDCl₃, 298 K) δ (ppm) = 87.9 (br) and 58.4 (br). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.4 (s). **Elemental analysis**: calc. for C₃₁H₃₉BIP (580.1922 g/mol): C, 64.16; H, 6.77. Found: C, 63.90; H, 6.90. **Mass Spectrometry (ESI-HRMS):** calculated for C₃₁H₃₉BP: 453.2877; found: 453.2871.

Figure S35. ¹H NMR spectrum of **5** (400 MHz, CDCl₃, 298 K)

Figure S36. ¹³C{¹H} spectrum of **5** (100 MHz, CDCl₃, 298 K)

Figure S38. $^{31}P\{^{1}H\}$ NMR spectrum of **5** (162 MHz, CDCl₃, 298 K)

Synthesis of C6 phosphonium borane catalyst 6

To a teflon valve sealed Schlenk vessel, C5 phosphonium salt **L6** (40.3 mg, 0.11 mmol, 1 equiv.) and 9-borabicyclo[3.3.1]nonane (9-BBN) (14.1 mg, 0.116 mmol, 1.05 equiv.) was charged in a glovebox. 6 mL CHCl₃ was added and the solution was heated at 80 °C for 24 h. Monitoring the ¹H NMR spectroscopy revealed full conversion. The reaction mixture was concentrated in vacuo to afford the crude solid product that was further purified by washing it with n-hexane three times. The white solid product was dried for 12 h in vacuo at 40 °C to give the product as a white powder. The isolated yield was 91% (48.0 mg, 0.10 mmol). X-ray photoelectron spectroscopy revealed that only chloride anion was deteted.

¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm) = 7.88 (m, 6H, *o*-Ph^H), 7.79 (m, 3H, *p*-Ph^H), 7.71 (m, 6H, *m*-Ph^H), 3.93 (m, 2H, PCH₂, 1.81-1.60 (m, 17H, bicyclo-H and BCH₂), 1.46 (m, 2H, PCH₂**CH**₂), 1.28 (m, 4H, **BCH**₂), 1.16 (m, 2H, BCH₂ **CH**₂). ¹³C{¹H}(100 MHz, CDCl₃, 298 K) δ (ppm) = 135.1 (d, ⁴J_{PC} = 2.9 Hz, *p*-Ph^C), 133.7 (d, ³J_{PC} = 10.0 Hz, *m*-Ph^C), 130.6 (d, ²J_{PC} = 12.5 Hz, *o*-Ph^C), 118.5 (d, ¹J_{PC} = 85.7 Hz, *i*-Ph^C), 33.6 (d, *J* = 15.1 Hz, CH₂), 33.1 (s, bicyclo-C), 33.6 (d, ²J_{PC} = 15.2 Hz, PCH₂CH₂), 33.3 (s, bicyclo-C), 31.0 (br, BCH₂), 27.6 (br, CH₂), 24.2 (s, bicyclo-C), 23.2 (s, bicyclo-C), 22.7 (d, ¹J_{PC} = 49.3 Hz, PCH₂), 22.6 (d, ³J_{PC}

= 4.5 Hz, CH₂). ¹¹B{¹H} NMR (128 MHz, CDCl₃, 298 K) δ (ppm) = 87.5 (br) and 57.7 (br). ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) δ (ppm) = 24.6 (s). **Elemental analysis**: calc. for C₃₁H₃₉BCIP (488.2571 g/mol): C, 76.16; H, 8.04. Found: C, 76.40; H, 7.79. **Mass Spectrometry (ESI-HRMS):** calculated for C₃₁H₃₉BP: 453.2877; found: 453.2870.

Figure S39. ¹H NMR spectrum of **6** (400 MHz, CDCl₃, 298 K)

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 fl (ppm)

Figure S42. ³¹P{¹H} NMR spectrum of **6** (162 MHz, CDCl₃, 298 K)

General procedure for synthesis of polymer Synthesis of poly(CHO-*alt*-PA)

Polymerization was performed in a 10-mLpressure vial inside the glovebox for each run. In a glovebox, PA (0.6 g, 4.08 mmol), initiator **3** (7.0 mg, 20.38 μ mol), and CHO (0.8 g, 8.15 mmol) were weighed into a 10-mLpressure vial equipped with magnetic stirrer. (The excess CHO was added as an alternative for a solvent to dissolve the catalyst and PA and to ensure the smooth ROAC process.) The vial was sealed and the polymerization was stirred at 120 °C in an oil bath for 20 min. After then, the reaction was quenched by cooling to -10 °C and diluted with 3 mL CH₂Cl₂. And then an aliquot of the solution was taken out for the analysis of the conversion of anhydrides by ¹H NMR spectrum. The resulting poly(CHO-*alt*-PA) was obtained by precipitation from ethanol. The polymer was finally dried under vacuum at 50 °C overnight

Table S1 Comparison of PA and CHO copolymerization results catalyzed by catalyst 1-3 and reported ammonium organoborane

R1-R3

Run	cataly st	CHO/PA/cat alyst	Temper ature (℃)	Time (min)	Conversio ªn%	Selectivit y%ª	<i>Mn</i> ⁵ (kg/mol)	${\cal D}^{ m b}$
1	1	400:200:1	120	20	55	>98	12.5/5.6	1.04/1.07
2	2	400:200:1	120	20	97	>98	16.2/7.7	1.03/1.04
3	3	400:200:1	120	20	>99	>98	18.0/8.2	1.04/1.06
4	R1	400:200:1	120	40	15	>99	6.2/2.8	1.04/1.08
5	R2	400:200:1	120	40	95	>99	28.4/14.2	1.02/1.03
6	R3	400:200:1	120	40	>99	>99	25.5/11.7	1.03/1.06

[a] The polymerization experiments were performed using 20.4 μ mmol catalyst, selectivity(%) was the percentage of ester linkage in the polymer, which were both determined by ¹H NMR spectroscopy. [b] Determined by GPC in THF, calibrated with polystyrene standards.

Figure S43. Comparison of reaction rate of PA/CHO copolymerization catalyzed by 3

and ammonium borane **R3** (catalyst/PA/CHO = 1:200:1000, in bulk, 120 °C).

Kinetics Procedures

PA concentration kinetics

PA (603 mg, 4.08 mmol), catalyst **3** (10.9 mg, 20.4 μ mol) and CHO (2.08 mL, 20.4 mmol) were added to a 10-mL reaction vessel equipped with magnetic stirrer. Then the flask was immrsed in a preheateed oil bath setted at 120 °C under nitrogen atmosphere. An aliquot was taken from the reaction mixture and the conversion was monitored by ¹H NMR at different time intervals.

Table S2 PA concentration kinetics

Aliquots	[PA] ₀	[PA] _t	[PA] _t /[PA] ₀	t (min)
1	8.16	7.16	0.877451	8
2	2.94	1.94	0.659864	10
3	1.75	0.75	0.428571	13
4	1.38	0.38	0.275362	15
5	1.16	0.16	0.137931	18

CHO concentration kinetics

PA (603 mg, 4.08 mmol), catalyst **3** (10.9 mg, 20.4 µmol), CHO (0.416 mL, 4.08 mmol) and 1.664 mL of toluene were added to a 10-mL reaction vessel equipped with magnetic stirrer. In order to keep the PA concentration constant, toluene was used. Then the flask was immersed in a preheateed oil bath setted at 120 °C under nitrogen atmosphere. An aliquot was taken from the reaction mixture and the conversion was monitored by ¹H NMR at different time intervals.

Table S3 CHO concentration kinetics

Aliquots	[CHO]₀	[CHO]t	[CHO]₁/[CHO]₀	t (min)
1	1.03	1	0.970873786	20
2	1.14	1	0.877192982	30
3	1.38	1	0.724637681	40
4	1.69	1	0.591715976	50

Catalyst concentration kinetics

In each run, the molar amount of catalyst **3** varied (20.4 μ mol, 11.0 μ mol, 5.02 μ mol, 1.83 μ mol) while the amount of PA and CHO kept constant. In a typical experiment , PA (603 mg, 4.08 mmol), catalyst **3** (20.4 μ mol, 10.9 mg), CHO (0.831 mL, 8.15 mmol), 0.775 mL of toluene were added to a 10-mL reaction vessel equipped with magnetic stirrer. The total volume of the reaction mixture was kept in 2 mL. Then the flask was immersed in a preheateed oil bath setted at 120 °C under nitrogen atmosphere. An aliquot was taken from the reaction mixture and the conversion was monitored by ¹H NMR at different time intervals.

Table S4 Catalyst concentration kinetics [Catalyst 3]₀ = 0.0102 M

Aliquots	[PA]₀	[PA]t	[PA] _t /[PA] ₀	t (min)
1	4.43	3.43	0.774266	9
2	3.21	2.21	0.688474	10
3	2.63	1.63	0.619772	11
4	2.33	1.33	0.570815	12
5	2.14	1.14	0.53271	13
6	1.68	0.68	0.404762	14

Table S5 Catalyst concentration kinetics [Catalyst 3]0 = 0.00550 M

Aliquots	[PA]0	[PA]t	[PA] _t /[PA] ₀	t (min)
1	8.35	7.35	0.88024	10
2	4.52	3.52	0.778761	13
3	2.86	1.86	0.65035	16
4	1.98	0.98	0.494949	19
5	1.79	0.79	0.441341	22
6	1.58	0.58	0.367089	25
7	1.52	0.52	0.342105	27

Table S6 Cataly	vst concentration	kinetics [Catal	vst 3	l₀ = 0 00251 M
	you concontration	Minetios joutur	yuuu	

Aliquots	[PA]₀	[PA]t	[PA] _t /[PA] ₀	t (min)
1	4.92	3.92	0.796748	12
2	3.44	2.44	0.709302	15
3	2.97	1.97	0.6633	18
4	2.69	1.69	0.628253	21
5	2.44	1.44	0.590164	24
6	2.26	1.26	0.557522	27
7	1.91	0.91	0.47644	33
8	1.71	0.71	0.415205	35

Table S7 Catalyst concentration kinetics [Catalyst 3]₀ = 0.000917 M

Aliquots	[PA]0	[PA]t	[PA]t/[PA]0	t (min)
1	5.26	4.26	0.809886	20
2	4.37	3.37	0.771167	30
3	3.24	2.24	0.691358	50
4	2.56	1.56	0.609375	60
5	2.19	1.19	0.543379	70
6	1.98	0.98	0.494949	80
7	1.8	0.8	0.44444	90
8	1.69	0.69	0.408284	100

Table S8 Catalyst concentration vs Kapp

[Catalyst] ₀	In[Catalyst]₀	Карр	InKapp
0.0102	-4.585	0.0675	-2.69563
0.0055	-5.204	0.0329	-3.41428
0.00251	-5.988	0.0148	-4.21313
0.000917	-6.995	0.0053	-5.24005

Reaction rate comparison

PA (603 mg, 4.08 mmol), ammonium borane catalyst **R3** (7.6 mg, 20.4 μ mol) and CHO (2.08 mL, 20.4 mmol) were added to a 10-mL reaction vessel equipped with magnetic stirrer. Then the flask was immrsed in a preheateed oil bath setted at 120 °C under nitrogen atmosphere. An aliquot was taken from the reaction mixture and the conversion was monitored by ¹H NMR at different time intervals.

Table S9 PA concentration kinetics by R3

Aliquots	[PA]0	[PA]t	[PA]t/[PA]0	t(min)
1	6.91	5.91	0.8552822	10
2	2.26	1.26	0.557522124	15
3	1.61	0.61	0.378881988	18
4	1.4	0.4	0.285714286	20
5	1.27	0.27	0.212598425	23
6	1.24	0.24	0.193548387	25
7	1.21	0.21	0.173553719	27
8	1.17	0.17	0.145299145	30

Figure S45. Zero-order kinetic plots of PA concentration for ROAC of PA and CHO in bulk at 120 °C by catalyst **R3**. The molar ratio of ammonium salt/PA/CHO = 1/200/1000.

Table S10 Control experiment of intermolecular B1/Ph₄PBr and 3 in the ROAC of PA and CHO in a molar ratio of CHO/PA/catalyst = 400/200/1 at

120	° C .
-----	--------------

Run	catalyst	Time (min)	Conversion% ^a	Selectivity% ^a	Мп ^ь	D^{b}
					(kg/mol)	
1	3	10	86	>98	13.0	1.19
2	B1/Ph₄PBr	10	20	>98	-	-
3	B1/Ph₄PBr	60	>99	>98	16.1	1.21

[a] Conversion(%) is the conversion of the PA, and selectivity is the percentage of ester linkage in the polymer, which were both determined by ¹H NMR spectroscopy. [b] Determined by GPC in THF, calibrated with polystyrene standards.

¹H and ¹³C{¹H} NMR spectra of resulted poly(epoxide-*alt*-anhydride)

Figure S46. ¹H NMR spectrum of the purified P(PA-*alt*-CHO) by catalyst **3** with CHO/PA/catalyst = 6000:5000:1 molar ratio in CDCl₃, table 2, run 7.

Figure S47. ¹H NMR spectrum of the purified P(PA-*alt*-CHO) by catalyst **3** with CHO/PA/catalyst = 400:200:1 molar ratio in CDCl₃, table 1, run 3.

Figure S49. ¹H NMR spectrum of the purified P(SA-*alt*-PO) by catalyst **3** with PO/SA/catalyst = 350:100:1 molar ratio in CDCl₃, table 3, run 3.

Figure S50. ¹H NMR spectrum of the purified P(SA-*alt*-CHO) by catalyst **3** with CHO/SA/catalyst = 400:200:1 molar ratio in CDCl₃, table 3, run 5.

Figure S51. ¹H NMR spectrum of purified P(PA-alt-CHO) in CDCl₃.

Figure S52. ¹³C NMR spectrum of purified P(PA-*alt*-CHO) in CDCl₃. **Selected GPC traces of the obtained poly(epoxide**-*alt*-anhydride)

Figure S53. The GPC evolution plots of the resultant poly(PA-*alt*-CHO) obtained from table 1, run 9.

Figure S54. The GPC evolution plots of the resultant poly(PA-*alt*-CHO) obtained from table 2, run 2.

Figure S55. The GPC evolution plots of the resultant poly(PA-*alt*-CHO) obtained from table 2, run 3.

Figure S56. The GPC evolution plots of the resultant poly(PA-*alt*-CHO) obtained from table 2, run 5.

Figure S57. The GPC evolution plots of the resultant poly(PA-*alt*-CHO) obtained from table 2, run 7.

Figure S58. The GPC evolution plots of the resultant poly(PA-*alt*-CHO) obtained from table 2, run 8.

Figure S59. The GPC evolution plots of the resultant poly(PA-*alt*-CHO) obtained from table 1, run 12.

Figure S60. The GPC evolution plots of the resultant poly(PA-alt-CHO) obtained from table 1, run 18, CHO/PA/CHD/**3** = 100:50:10:1.

Maldi-TOF analysis of low molecular weight of poly(CHO-alt-PA)

Figure S61. (a) MALDI-TOF MS of poly(PA-*alt*-CHO) obtained by using catalyst **3** (table1, run 12). (b) The fitting relationship of m/z of Br-terminated

species vs repeating unit. (c) The fitting relationship of m/z of Br-terminated species vs repeating unit. (d) The fitting relationship of OH initiated species vs repeating unit.

Figure S62. MALDI-TOF MS of poly(PA-*alt*-CHO) obtained from table 1, run 18.

Additional Information

92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 3: fl (ppm)

Figure S63. $^{11}B\{^{1}H\}$ NMR of catalyst $\boldsymbol{3}$ in THF-d_8

Figure S64. High resolution mass spectrum of catalyst 1

Figure S65. High resolution mass spectrum of catalyst 2

Figure S66. High resolution mass spectrum of catalyst 3

Figure S67. High resolution mass spectrum of catalyst 4

Figure S68. ¹H NMR spectrum of CHD (400 MHz, CDCl₃, 298 K)

Figure S69. ¹H NMR spectrum of the crude reaction mixture from table 1, run 18.

Crystal data and structure refinement for catalyst precursors

 Table S11.
 Crystal data and structure refinement for 2098034.

<u> </u>	Identification code	2098034				
	Empirical formula	C ₂₁ H ₂₀ Br P				
	Formula weight	383.25				
	Temperature	298(2) K				
	Wavelength	0.71073 A				
	Crystal system, space group	Monoclinic, P2(1)/c				
	Unit cell dimensions	a = 10.8668(11) A alpha = 90 deg. b = 9.9356(9) A beta = 105.376(4) deg. c = 17.4186(18) A gamma = 90 deg.				
	Volume	1813.3(3) A^3				
	Z, Calculated density	4, 1.404 Mg/m^3				
	Absorption coefficient	2.352 mm^-1				
	F(000)	784				
	Crystal size	0.25 x 0.13 x 0.08 mm				
	Theta range for data collection	1.94 to 25.02 deg.				
-18<=	Limiting indices I<=20	-10<=h<=12, -11<=k<=11,				
	Reflections collected / unique	8673/3195 [R(int) = 0.1065]				
	Completeness to theta = 25.02	99.9 %				
	Absorption correction	Semi-empirical from equivalents				
	Max. and min. transmission	0.8341 and 0.5908				
	Refinement method	Full-matrix least-squares on F^2				

Data / restraints / parameters	3195 / 0 / 209
Goodness-of-fit on F^2	1.076
Final R indices [I>2sigma(I)]	R ¹ = 0.0695, wR ² = 0.1626
R indices (all data)	R ¹ = 0.1057, wR ² = 0.1754
Extinction coefficient	0.0040(11)
Largest diff. peak and hole	0.677 and -1.583 e.A ^{^-3}

Table	S12.	Bond	lengths	[Å]	and	angles	[deg]	for	2098034.
	F	P(1)-C(16)			1.766(6)		<u> </u>
	F	P(1)-C(3)				1.769(6))		
	F	P(1)-C(4)				1.771(6))		
	F	P(1)-C(10)			1.773(6))		
	C	C(1)-C(2)				1.292(1	0)		
	(C(1)-H(1A	.)			0.9300			
	(C(1)-H(1B)			0.9300			
	(C(2)-C(3)				1.466(9))		
	(C(2)-H(2)				0.9300			
	(C(3)-H(3A	.)			0.9700			
	(C(3)-H(3B)			0.9700			
	(C(4)-C(9)				1.378(8))		
	(C(4)-C(5)				1.389(8))		
	(C(5)-C(6)				1.355(9))		
	(C(5)-H(5)				0.9300			
	(C(6)-C(7)				1.356(9))		
	(C(6)-H(6)				0.9300			
	(C(7)-C(8)				1.355(9))		
	C	C(7)-H(7)				0.9300			
	(C(8)-C(9)				1.359(8))		
	C	C(8)-H(8)				0.9300			
	C	C(9)-H(9)				0.9300			
	C	C(10)-C(1	5)			1.372(8)		
	(C(10)-C(1	1)			1.375(8)		
	(C(11)-C(1	2)			1.362(9)		
	(C(11)-H(1 ⁻	1)			0.9300			
	(C(12)-C(1	3)			1.356(1	1)		
	(C(12)-H(1	2)			0.9300			
	(C(13)-C(1	4)			1.349(1	0)		
	(C(13)-H(1	3)			0.9300			

C(14)-C(15)	1.368(8)
C(14)-H(14)	0.9300
C(15)-H(15)	0.9300
C(16)-C(17)	1.361(9)
C(16)-C(21)	1.374(9)
C(17)-C(18)	1.376(9)
C(17)-H(17)	0.9300
C(18)-C(19)	1.363(10)
C(18)-H(18)	0.9300
C(19)-C(20)	1.347(10)
C(19)-H(19)	0.9300
C(20)-C(21)	1.361(10)
C(20)-H(20)	0.9300
C(21)-H(21)	0.9300
C(16)-P(1)-C(3)	109.2(3)
C(16)-P(1)-C(4)	108.2(3)
C(3)-P(1)-C(4)	110.3(3)
C(16)-P(1)-C(10)	107.1(3)
C(3)-P(1)-C(10)	112.5(3)
C(4)-P(1)-C(10)	109.4(3)
C(2)-C(1)-H(1A)	120.0
C(2)-C(1)-H(1B)	120.0
H(1A)-C(1)-H(1B)	120.0
C(1)-C(2)-C(3)	124.5(8)
C(1)-C(2)-H(2)	117.7
C(3)-C(2)-H(2)	117.7
C(2)-C(3)-P(1)	117.1(5)
C(2)-C(3)-H(3A)	108.0
P(1)-C(3)-H(3A)	108.0
C(2)-C(3)-H(3B)	108.0
P(1)-C(3)-H(3B)	108.0
H(3A)-C(3)-H(3B)	107.3
C(9)-C(4)-C(5)	118.8(6)
C(9)-C(4)-P(1)	118.3(5)
C(5)-C(4)-P(1)	122.8(5)
C(6)-C(5)-C(4)	119.8(6)
C(6)-C(5)-H(5)	120.1
C(4)-C(5)-H(5)	120.1
C(5)-C(6)-C(7)	120.7(7)
C(5)-C(6)-H(6)	119.7
C(7)-C(6)-H(6)	119.7
C(8)-C(7)-C(6)	120.1(7)
C(8)-C(7)-H(7)	119.9
C(6)-C(7)-H(7)	119.9
C(7)-C(6)-H(6) C(8)-C(7)-C(6) C(8)-C(7)-H(7) C(6)-C(7)-H(7)	119.7 120.1(7) 119.9
	113.3

C(7)-C(8)-C(9)	120.6(6)
C(7)-C(8)-H(8)	119.7
C(9)-C(8)-H(8)	119.7
C(8)-C(9)-C(4)	120.0(6)
C(8)-C(9)-H(9)	120.0
C(4)-C(9)-H(9)	120.0
C(15)-C(10)-C(11)	118.8(6)
C(15)-C(10)-P(1)	122.4(5)
C(11)-C(10)-P(1)	118.8(5)
C(12)-C(11)-C(10)	120.9(7)
C(12)-C(11)-H(11)	119.5
C(10)-C(11)-H(11)	119.5
C(13)-C(12)-C(11)	119.4(7)
C(13)-C(12)-H(12)	120.3
C(11)-C(12)-H(12)	120.3
C(14)-C(13)-C(12)	120.6(6)
C(14)-C(13)-H(13)	119.7
C(12)-C(13)-H(13)	119.7
C(13)-C(14)-C(15)	120.6(7)
C(13)-C(14)-H(14)	119.7
C(15)-C(14)-H(14)	119.7
C(14)-C(15)-C(10)	119.7(7)
C(14)-C(15)-H(15)	120.2
C(10)-C(15)-H(15)	120.2
C(17)-C(16)-C(21)	118.8(6)
C(17)-C(16)-P(1)	122.6(5)
C(21)-C(16)-P(1)	118.6(6)
C(16)-C(17)-C(18)	120.4(7)
C(16)-C(17)-H(17)	119.8
C(18)-C(17)-H(17)	119.8
C(19)-C(18)-C(17)	119.3(8)
C(19)-C(18)-H(18)	120.4
C(17)-C(18)-H(18)	120.4
C(20)-C(19)-C(18)	121.0(7)
C(20)-C(19)-H(19)	119.5
C(18)-C(19)-H(19)	119.5
C(19)-C(20)-C(21)	119.5(8)
C(19)-C(20)-H(20)	120.2
C(21)-C(20)-H(20)	120.2
C(20)-C(21)-C(16)	121.0(8)
C(20)-C(21)-H(21)	119.5
C(16)-C(21)-H(21)	119.5

Table	S13.	Torsion	angles	[deg]	for	2098034.
	C(1)-C(2)-C(3)-P(1)				130.8(8)
	C(16)-P(1)-C(3)-C(2)				168.8(5)
	C(4)-P(1))-C(3)-C(2)				50.1(6)
	C(10)-P(1)-C(3)-C(2)				-72.4(6)
	C(16)-P(1)-C(4)-C(9)				-66.3(6)
	C(3)-P(1))-C(4)-C(9)				53.1(6)
	C(10)-P(1)-C(4)-C(9)				177.4(5)
	C(16)-P(1)-C(4)-C(5)				111.0(6)
	C(3)-P(1))-C(4)-C(5)				-129.6(6)
	C(10)-P(1)-C(4)-C(5)				-5.3(7)
	C(9)-C(4)-C(5)-C(6)				2.1(11)
	P(1)-C(4))-C(5)-C(6)				-175.2(6)
	C(4)-C(5))-C(6)-C(7)				-1.2(12)
	C(5)-C(6))-C(7)-C(8)				0.8(13)
	C(6)-C(7)-C(8)-C(9)				-1.5(13)
	C(7)-C(8))-C(9)-C(4)				2.4(12)
	C(5)-C(4))-C(9)-C(8)				-2.7(10)
	P(1)-C(4))-C(9)-C(8)				174.7(6)
	C(16)-P(1)-C(10)-C(15)				132.2(5)
	C(3)-P(1))-C(10)-C(15)				12.1(6)
	C(4)-P(1))-C(10)-C(15)				-110.8(5)
	C(16)-P(1)-C(10)-C(11)				-48.4(6)
	C(3)-P(1))-C(10)-C(11)				-168.4(5)
	C(4)-P(1))-C(10)-C(11)				68.6(5)
	C(15)-C(10)-C(11)-C(12)	1			0.6(10)
	P(1)-C(10	0)-C(11)-C(12)				-178.8(5)
	C(10)-C(11)-C(12)-C(13)	1			0.0(10)
	C(11)-C(12)-C(13)-C(14)	1			-1.0(11)
	C(12)-C(13)-C(14)-C(15))			1.4(11)
	C(13)-C(14)-C(15)-C(10))			-0.7(10)
	C(11)-C(10)-C(15)-C(14)				-0.2(9)
	P(1)-C(10	0)-C(15)-C(14)				179.2(5)
	C(3)-P(1))-C(16)-C(17)				-131.2(5)
	C(4)-P(1))-C(16)-C(17)				-11.2(6)
	C(10)-P(1)-C(16)-C(17)				106.6(5)
	C(3)-P(1))-C(16)-C(21)				52.3(6)
	C(4)-P(1))-C(16)-C(21)				172.3(5)
	C(10)-P(1)-C(16)-C(21)				-69.9(6)
	C(21)-C(16)-C(17)-C(18))			1.1(10)
	P(1)-C(1)	6)-C(17)-C(18)				-175.4(5)
	C(16)-C(17)-C(18)-C(19))			0.3(10)
	C(17)-C(18)-C(19)-C(20))			-1.0(11)

0.1(12)
1.4(12)
-2.0(10)
174.6(6)

Figure S71. X-ray crystal structure of **L2**. Hydrogen atoms are omitted for clarity and ellipsoids drawn at 30% probability (CCDC # 2098035).

Table S14. Crystal data and structure refinement for 2098035.

Identification code	2098035
Empirical formula	C22 H22 Br P
Formula weight	397.28
Temperature	298(2) K

	Wavelength	0.71073 A				
	Crystal system, space group	Monoclinic, P2(1)/c				
	Unit cell dimensions	a = 11.3364(13) A alpha = 90 deg.				
104.6	99(3) deg.	c = 181348(18) A gamma = 90				
deg.		c = 10.1040(10) // gamma = 30				
	Volume	2054.8(4) A^3				
	Z, Calculated density	4, 1.284 Mg/m^3				
	Absorption coefficient	2.078 mm^-1				
	F(000)	816				
	Crystal size	0.40 x 0.30 x 0.27 mm				
	Theta range for data collection	2.29 to 25.02 deg.				
-21<=	Limiting indices I<=21	-11<=h<=13, -10<=k<=12,				
	Reflections collected / unique	8905 / 3614 [R(int) = 0.0757]				
	Completeness to theta = 25.02	99.4 %				
	Absorption correction	Semi-empirical from equivalents				
	Max. and min. transmission	0.6038 and 0.4903				
	Refinement method	Full-matrix least-squares on F^2				
	Data / restraints / parameters	3614 / 28 / 224				
	Goodness-of-fit on F^2	1.044				
	Final R indices [I>2sigma(I)]	R ¹ = 0.0553, wR ² = 0.1260				
	R indices (all data)	R ¹ = 0.1062, wR ² = 0.1463				

Largest diff. peak and hole 0.631 and -1.227 e.A^-3

Table	S15.	Bond	lengths	[Å]	and	angles	[deg]	for	2098035.
<u> </u>		P(1)-C(1	7)			1.821(5			<u> </u>
		P(1)-C(1	1)			1.823(5)		
		P(1)-C(4	.)			1.829(4)		
		P(1)-C(5	5)			1.834(4)		
		C(1)-C(2	2)			1.328(9)		
		C(1)-H(1	A)			0.9300	-		
		C(1)-H(1	B)			0.9300			
		C(2)-C(3	3)			1.502(8	5)		
		C(2)-H(2	2)			0.9300			
		C(1')-C(2	2')			1.310(10)		
		C(1')-H(1'1)			0.9300			
		C(1')-H(1'2)			0.9300			
		C(2')-C(3	3)			1.498(9))		
		C(2')-H(2	2')			0.9300			
		C(3)-C(4)			1.559(7	<i>`</i>)		
		C(3)-H(3	Â)			0.9700			
		C(3)-H(3	BB)			0.9700			
		C(3)-H(3	5'A)			0.9700			
		C(3)-H(3	5'B)			0.9700			
		C(4)-H(4	A)			0.9700			
		C(4)-H(4	B)			0.9700			
		C(5)-C(1	0)			1.413(6	5)		
		C(5)-C(6	5)			1.414(6	5)		
		C(6)-C(7	')			1.422(7	<i>`</i>)		
		C(6)-H(6	5)			0.9300			
		C(7)-C(8	8)			1.402(8	5)		
		C(7)-H(7	')			0.9300			
		C(8)-C(9))			1.387(8	5)		
		C(8)-H(8	3)			0.9300			
		C(9)-C(1	0)			1.401(7)		
		C(9)-H(9))			0.9300			
		C(10)-H	(10)			0.9300			
		C(11)-C((12)			1.398(6	5)		
		C(11)-C((16)			1.414(6	5)		
		C(12)-C	(13)			1.423(7	7)		
		C(12)-H	(12)			0.9300			
		C(13)-C	(14)			1.383(8	3)		
		C(13)-H	(13)			0.9300			
		C(14)-C	(15)			1.382(8	3)		
		C(14)-H	(14)			0.9300			

C(15)-C(16)	1.410(7)
C(15)-H(15)	0.9300
C(16)-H(16)	0.9300
C(17)-C(22)	1.416(6)
C(17)-C(18)	1.419(6)
C(18)-C(19)	1.409(8)
C(18)-H(18)	0.9300
C(19)-C(20)	1.389(9)
C(19)-H(19)	0.9300
C(20)-C(21)	1.403(9)
C(20)-H(20)	0.9300
C(21)-C(22)	1.413(7)
C(21)-H(21)	0.9300
C(22)-H(22)	0.9300
C(17)-P(1)-C(11)	106.9(2)
C(17)-P(1)-C(4)	110.7(2)
C(11)-P(1)-C(4)	111.2(2)
C(17)-P(1)-C(5)	110.5(2)
C(11)-P(1)-C(5)	109.3(2)
C(4)-P(1)-C(5)	108.3(2)
C(2)-C(1)-H(1A)	120.0
C(2)-C(1)-H(1B)	120.0
H(1A)-C(1)-H(1B)	120.0
C(1)-C(2)-C(3)	119.1(10)
C(1)-C(2)-H(2)	120.4
C(3)-C(2)-H(2)	120.4
C(2')-C(1')-H(1'1)	120.0
C(2')-C(1')-H(1'2)	120.0
H(1'1)-C(1')-H(1'2)	120.0
C(1')-C(2')-C(3)	135.0(16)
C(1')-C(2')-H(2')	112.5
C(3)-C(2')-H(2')	112.5
C(2')-C(3)-C(2)	23.6(8)
C(2')-C(3)-C(4)	105.0(8)
C(2)-C(3)-C(4)	122.4(7)
C(2')-C(3)-H(3A)	129.9
C(2)-C(3)-H(3A)	106.7
C(4)-C(3)-H(3A)	106.7
C(2')-C(3)-H(3B)	100.1
C(2)-C(3)-H(3B)	106.7
C(4)-C(3)-H(3B)	106.7
H(3A)-C(3)-H(3B)	106.6
C(2')-C(3)-H(3'A)	108.0
C(2)-C(3)-H(3'A)	86.1

C(4)-C(3)-H(3'A)	110.2
H(3A)-C(3)-H(3'A)	23.6
H(3B)-C(3)-H(3'A)	124.9
C(2')-C(3)-H(3'B)	113.8
C(2)-C(3)-H(3'B)	114.7
C(4)-C(3)-H(3'B)	111.3
H(3A)-C(3)-H(3'B)	89.1
H(3B)-C(3)-H(3'B)	17.6
H(3'A)-C(3)-H(3'B)	108.5
C(3)-C(4)-P(1)	112.9(3)
C(3)-C(4)-H(4A)	109.0
P(1)-C(4)-H(4A)	109.0
C(3)-C(4)-H(4B)	109.0
P(1)-C(4)-H(4B)	109.0
H(4A)-C(4)-H(4B)	107.8
C(10)-C(5)-C(6)	119.5(4)
C(10)-C(5)-P(1)	118.2(4)
C(6)-C(5)-P(1)	122.2(4)
C(5)-C(6)-C(7)	119.2(5)
C(5)-C(6)-H(6)	120.4
C(7)-C(6)-H(6)	120.4
C(8)-C(7)-C(6)	120.1(5)
C(8)-C(7)-H(7)	120.0
C(6)-C(7)-H(7)	120.0
C(9)-C(8)-C(7)	120.4(5)
C(9)-C(8)-H(8)	119.8
C(7)-C(8)-H(8)	119.8
C(8)-C(9)-C(10)	120.4(5)
C(8)-C(9)-H(9)	119.8
C(10)-C(9)-H(9)	119.8
C(9)-C(10)-C(5)	120.3(5)
C(9)-C(10)-H(10)	119.8
C(5)-C(10)-H(10)	119.8
C(12)-C(11)-C(16)	118.7(4)
C(12)-C(11)-P(1)	123.0(4)
C(16)-C(11)-P(1)	118.3(4)
C(11)-C(12)-C(13)	120.4(5)
C(11)-C(12)-H(12)	119.8
C(13)-C(12)-H(12)	119.8
C(14)-C(13)-C(12)	120.2(5)
C(14)-C(13)-H(13)	119.9
C(12)-C(13)-H(13)	119.9
C(15)-C(14)-C(13)	120.0(5)
C(15)-C(14)-H(14)	120.0

C(13)-C(14)-H(14)	120.0
C(14)-C(15)-C(16)	120.8(5)
C(14)-C(15)-H(15)	119.6
C(16)-C(15)-H(15)	119.6
C(15)-C(16)-C(11)	120.0(5)
C(15)-C(16)-H(16)	120.0
C(11)-C(16)-H(16)	120.0
C(22)-C(17)-C(18)	118.8(5)
C(22)-C(17)-P(1)	122.4(4)
C(18)-C(17)-P(1)	118.7(4)
C(19)-C(18)-C(17)	120.3(5)
C(19)-C(18)-H(18)	119.8
C(17)-C(18)-H(18)	119.8
C(20)-C(19)-C(18)	120.5(6)
C(20)-C(19)-H(19)	119.8
C(18)-C(19)-H(19)	119.8
C(19)-C(20)-C(21)	120.0(6)
C(19)-C(20)-H(20)	120.0
C(21)-C(20)-H(20)	120.0
C(20)-C(21)-C(22)	120.5(6)
C(20)-C(21)-H(21)	119.8
C(22)-C(21)-H(21)	119.8
C(21)-C(22)-C(17)	119.9(5)
C(21)-C(22)-H(22)	120.1
C(17)-C(22)-H(22)	120.1

Table	S16.	Torsion	angles	[deg]	for	2098035.
<u> </u>	C(1')-C	(2')-C(3)-C(2)		1		38(2)
	C(1')-C	(2')-C(3)-C(4)				179(3)
	C(1)-C(2)-C(3)-C(2')				-2(3)
	C(1)-C(2)-C(3)-C(4)				-48.3(19)
	C(2')-C	(3)-C(4)-P(1)				143.4(11)
	C(2)-C(3)-C(4)-P(1)				161.0(8)
	C(17)-F	P(1)-C(4)-C(3)				-75.2(4)
	C(11)-P	P(1)-C(4)-C(3)				166.2(3)
	C(5)-P(1)-C(4)-C(3)				46.1(4)
	C(17)-F	P(1)-C(5)-C(10)				176.0(4)
	C(11)-P	P(1)-C(5)-C(10)				-66.7(4)
	C(4)-P(1)-C(5)-C(10)				54.6(4)
	C(17)-F	P(1)-C(5)-C(6)				-5.9(5)
	C(11)-P	P(1)-C(5)-C(6)				111.4(4)
	C(4)-P(1)-C(5)-C(6)				-127.3(4)

C(10)-C(5)-C(6)-C(7)	-0.8(7)
P(1)-C(5)-C(6)-C(7)	-178.9(4)
C(5)-C(6)-C(7)-C(8)	1.7(8)
C(6)-C(7)-C(8)-C(9)	-1.1(9)
C(7)-C(8)-C(9)-C(10)	-0.4(9)
C(8)-C(9)-C(10)-C(5)	1.3(8)
C(6)-C(5)-C(10)-C(9)	-0.7(7)
P(1)-C(5)-C(10)-C(9)	177.5(4)
C(17)-P(1)-C(11)-C(12)	116.2(4)
C(4)-P(1)-C(11)-C(12)	-122.8(4)
C(5)-P(1)-C(11)-C(12)	-3.3(4)
C(17)-P(1)-C(11)-C(16)	-60.3(4)
C(4)-P(1)-C(11)-C(16)	60.6(4)
C(5)-P(1)-C(11)-C(16)	-179.8(4)
C(16)-C(11)-C(12)-C(13)	-0.6(7)
P(1)-C(11)-C(12)-C(13)	-177.1(4)
C(11)-C(12)-C(13)-C(14)	0.5(8)
C(12)-C(13)-C(14)-C(15)	-0.4(9)
C(13)-C(14)-C(15)-C(16)	0.3(9)
C(14)-C(15)-C(16)-C(11)	-0.3(9)
C(12)-C(11)-C(16)-C(15)	0.4(7)
P(1)-C(11)-C(16)-C(15)	177.1(4)
C(11)-P(1)-C(17)-C(22)	127.0(4)
C(4)-P(1)-C(17)-C(22)	5.7(5)
C(5)-P(1)-C(17)-C(22)	-114.2(4)
C(11)-P(1)-C(17)-C(18)	-51.0(4)
C(4)-P(1)-C(17)-C(18)	-172.3(4)
C(5)-P(1)-C(17)-C(18)	67.8(4)
C(22)-C(17)-C(18)-C(19)	1.8(8)
P(1)-C(17)-C(18)-C(19)	179.8(4)
C(17)-C(18)-C(19)-C(20)	-1.1(9)
C(18)-C(19)-C(20)-C(21)	0.2(9)
C(19)-C(20)-C(21)-C(22)	-0.1(9)
C(20)-C(21)-C(22)-C(17)	0.8(8)
C(18)-C(17)-C(22)-C(21)	-1.6(7)
P(1)-C(17)-C(22)-C(21)	-179.6(4)

Computation details

The density functional theory (DFT) calculations were carried out to analysis the structures, interactions and reactions. All calculations were carried out using the Gaussian 09 program. The B3LYP/6-31G(d) level with D3(BJ)

correction method has been used for structure optimizations, transition states (TS) and intrinsic reaction coordinate (IRC) calculations, and subsequent frequency calculations at the same level verify the optimized structures to be ground states without imaginary frequencies (NImag = 0) and TSs have only one imaginary frequency. The single point energies were calculated at M06-2X/6-311+G(d,p) level by a self-consistent reaction field (SCRF) with SMD model, while and solvent parameter setting for CHO (ϵ = 11.771631) as reported.²

The conformers of **3** and **R3** were obtained and shown in Figure S62. Different structures of ions of **3** and **R3** are presented in Figure S62, namely the linear structures and curved structures. Based on the calculation, the curved structure is more likely to exist. The optimized size of the ions in the linear structure is shown in Figure S63.

3 R3 Figure S72. Optimized structures of different ions.

Size of the ion (Å)

Figure S73. The optimized size of the ions in the linear structure of **3** and **R3**

The interaction structures for the coordination benzoic acid anion with different cations were shown in Figure S64.

74.4 kcal/mol

79.5 kcal/mol

Figure S74. Optimized interaction structures of **3/R3** and anion with interaction energy.

Cartesian coordinates for the optimized structures

3 ion (in Figure S73)

С	-1.29038600	0.10466000	-1.21011900
Н	-1.35748900	1.02928200	-1.79444500
Н	-1.34295500	-0.72339800	-1.92697800
С	3.80680300	0.02497700	-1.45045300
Н	3.79156200	0.88782500	-2.13852900
Н	3.77222800	-0.84547100	-2.12835800
С	1.24544600	0.05841900	-1.33334300
---	-------------	-------------	-------------
Н	1.19848000	-0.82008200	-1.99256700
Н	1.21674900	0.93832200	-1.99137500
С	2.56405700	0.04421900	-0.55398600
Н	2.57729900	-0.82954100	0.11264300
Н	2.59959300	0.92257200	0.10565300
С	0.02037000	0.07034800	-0.41152700
Н	0.04050200	-0.81555900	0.23505400
Н	0.06827700	0.94510400	0.24692100
С	5.47506500	0.02026100	0.80765800
С	7.50001700	1.59459800	0.29725500
С	6.23431800	1.33786800	1.13783600
С	7.31702700	1.32067100	-1.20771100
С	6.56339400	0.00468800	-1.55500700
С	6.25374100	-1.27748000	1.16495000
С	7.52020300	-1.53680800	0.32625600
С	7.33037000	-1.29579900	-1.18324700
В	5.21599400	0.01247100	-0.74394000
Н	4.55447200	0.02017600	1.40729700
Н	7.80862100	2.63894600	0.43285700
Н	8.32676700	0.99457800	0.68445100
Н	5.53643900	2.17452600	0.98237500
Н	6.49350900	1.35825300	2.20587200
Н	8.29793800	1.32907600	-1.70294300
Н	6.75223900	2.15556700	-1.64871700
Н	6.40914500	-0.00558500	-2.64330000
Н	6.51665600	-1.27067500	2.23228400
Н	5.56668200	-2.12661500	1.03086600
Н	8.34134200	-0.91963100	0.69834900
Н	7.84120000	-2.57451800	0.48245200
Н	6.77240500	-2.14494500	-1.60539400
Н	8.31012300	-1.30541200	-1.68078400
Р	-2.80751200	0.02159300	-0.19107000
С	-4.23513500	0.03800900	-1.29319900
С	-5.32840100	-0.80003000	-1.02827100
С	-4.26292700	0.90546100	-2.39836300
С	-6.44215300	-0.76691400	-1.86515800
Н	-5.30637700	-1.47606000	-0.18023500
С	-5.38142900	0.93146200	-3.22750000
Н	-3.42419000	1.56043700	-2.61300800
С	-6.46934600	0.09630900	-2.96147900
Н	-7.28636100	-1.41786500	-1.66195300
Н	-5.40238000	1.60005900	-4.08206600
Н	-7.33787200	0.11761300	-3.61221100

С	-2.87306500	1.43103000	0.93332300	
С	-1.99710700	1.48074200	2.03257100	
С	-3.76582600	2.48590200	0.69601300	
С	-2.01359400	2.58680700	2.87730900	
Н	-1.32199900	0.65611300	2.23614700	
С	-3.77318200	3.58894400	1.54879100	
Н	-4.45430900	2.44361700	-0.14080600	
С	-2.89834400	3.64105200	2.63431400	
Н	-1.33958600	2.62458100	3.72708100	
Н	-4.46643400	4.40372900	1.36648100	
Н	-2.90870000	4.50077200	3.29695700	
С	-2.80421600	-1.50264800	0.76849800	
С	-2.24740300	-2.67009000	0.22186500	
С	-3.42241200	-1.54062000	2.02817000	
С	-2.30255400	-3.86296400	0.93814300	
Н	-1.77393500	-2.65423800	-0.75460200	
С	-3.47618800	-2.74057800	2.73508600	
Н	-3.85138900	-0.64024200	2.45514600	
С	-2.91568800	-3.89830600	2.19278600	
Н	-1.86655300	-4.76354900	0.51806800	
Н	-3.95220400	-2.76917100	3.70993800	
Н	-2.95549300	-4.82997800	2.74834000	

R3 ion (in Figure S73)

Ν	4.16483100	-1.07048400	-0.08264800
С	3.00507700	-0.07200500	-0.06432100
Н	3.16957900	0.58319700	-0.92451300
Н	3.13798100	0.51950300	0.84262500
С	-1.95741300	0.96552100	0.10729500
Н	-1.81970900	1.74686100	-0.66006200
Н	-1.82339400	1.50814600	1.05851000
С	0.54856100	0.43400600	0.03708900
Н	0.69079100	0.95437500	0.99432000
Н	0.69555400	1.18656800	-0.75016500
С	-0.88058900	-0.11390400	-0.04180200
Н	-1.01503300	-0.87863700	0.73593600
Н	-1.01192700	-0.63534200	-0.99985500

С	5.48687300	-0.31728600	-0.25803600
Н	6.26311200	-1.08812800	-0.26321500
Н	5.43779200	0.12028700	-1.25723700
С	1.60555800	-0.67377500	-0.10596100
Н	1.46597500	-1.40005500	0.70362000
Н	1.43777400	-1.20226900	-1.05063600
С	4.02734500	-2.01070700	-1.24821100
Н	4.91949200	-2.63612200	-1.29686800
Н	3.93127700	-1.42565000	-2.16371500
Н	3.14591800	-2.63362000	-1.10904700
С	4.19006300	-1.87536100	1.18629400
Н	4.23150400	-1.20195500	2.04039400
Н	5.07082100	-2.51881000	1.17299000
Н	3.28924700	-2.48418700	1.23996600
С	5.80190400	0.74796000	0.78696100
Н	5.75242700	0.32410600	1.79578000
Н	5.07288600	1.56372900	0.73561000
С	7.21339500	1.32699500	0.56463700
Н	7.41610200	2.01546900	1.39189400
Н	7.95381800	0.52084200	0.64998800
С	7.39016200	2.06575500	-0.76545500
Н	8.37681300	2.53532200	-0.81268700
Н	6.64099900	2.85804100	-0.88162400
Н	7.31288700	1.39686000	-1.63054100
С	-3.97198000	-0.96713600	-0.19979000
С	-5.94401100	0.08170500	-1.56123800
С	-4.82568700	-0.97636800	-1.50040400
С	-5.50745300	1.48200900	-1.09100800
С	-4.65871100	1.50849800	0.21120500
С	-4.75081300	-1.38503100	1.08290100
С	-5.85405200	-0.40659400	1.52878000
С	-5.42900300	1.07348200	1.49183000
В	-3.46430200	0.50285200	0.03211400
Н	-3.16383400	-1.69887300	-0.33797200
Н	-6.30773100	0.15165000	-2.59411400
Н	-6.80128500	-0.25472300	-0.97383800
Н	-4.14391100	-0.81316400	-2.34865100
Н	-5.25838800	-1.97525400	-1.65180400
Н	-6.39407600	2.11949700	-0.96939800
Н	-4.91049300	1.94880200	-1.88857400
Н	-4.32798100	2.54524000	0.36650900
Н	-5.18300100	-2.38564500	0.94192300
Н	-4.02109100	-1.48601500	1.90063300
Н	-6.74385800	-0.55063700	0.91212700

Н	-6.16171800	-0.66233200	2.55053100
Н	-4.78017100	1.27342100	2.35766300
Н	-6.31282000	1.71204000	1.62686000
3 and anion ((in Figure S74)		
С	0.46455600	1.73360500	1.34635400
Н	1.16038100	0.88976300	1.40379700
Н	0.04955100	1.84209800	2.35533000
С	3.94225200	1.65896100	0.45447600
Н	4.54251900	2.43681900	-0.03798100
Н	3.07197000	1.52533200	-0.21988000
С	2.43965500	3.29535900	1.78331600
Н	2.92619900	4.19729600	1.38853400
Н	2.12355900	3.53670300	2.80765200
С	3.45622900	2.14178700	1.83030000
Н	3.02218600	1.30216700	2.38578600
Н	4.32181500	2.46322800	2.42376400
С	1.20163600	3.00626800	0.91854100
Н	0.51641500	3.85980400	0.95839700
Н	1.51328900	2.91481300	-0.12503500
С	4.18787400	-1.01686600	1.20239900
С	6.59142100	-1.95167400	0.77642500
С	5.46709000	-1.66831000	1.79211900
С	6.84705300	-0.79804200	-0.21119900
С	5.57048400	-0.16942200	-0.83017000
С	3.37412100	-1.93847600	0.24677100
С	4.08510900	-2.31180400	-1.06716900
С	4.77300100	-1.12341600	-1.76727600
В	4.59203400	0.23667900	0.33482100
Н	3.52804200	-0.77314400	2.04638800
Н	7.51855200	-2.16322000	1.32484100
Н	6.36614200	-2.86621900	0.22201800
Н	5.85854000	-0.98982400	2.56418500
Н	5.20651600	-2.59960700	2.31555600
Н	7.51886500	-1.14523100	-1.00937900
Н	7.39328800	-0.00129600	0.31530300
Н	5.88666400	0.68984700	-1.43808000
Н	3.07811700	-2.85560000	0.77704200
Н	2.44012700	-1.41605900	-0.00572900
Н	4.81202500	-3.10524700	-0.87753600
Н	3.34809200	-2.74742900	-1.75442800
Н	4.00136100	-0.52553000	-2.27064200
Н	5.43284500	-1.50149400	-2.56178600
Р	-0.89262100	1.10547900	0.24358200

С	-1.49031400	-0.27006400	1.25378900
С	-2.78442300	-0.22180600	1.78717100
С	-0.63674000	-1.33606500	1.57301700
С	-3.23443500	-1.26771300	2.58978100
Н	-3.45589300	0.58353300	1.51494600
С	-1.10219100	-2.37992500	2.36962700
Н	0.38041200	-1.36900000	1.19538400
С	-2.40286100	-2.35062100	2.87335500
Н	-4.25092500	-1.24569200	2.96908400
Н	-0.44736300	-3.21738100	2.59156500
Н	-2.76858100	-3.17257500	3.48113400
С	0.01074100	0.71634100	-1.27959100
С	0.42110900	1.76866600	-2.10712200
С	0.34188400	-0.60232000	-1.61365300
С	1.18399800	1.50429800	-3.24562100
Н	0.12237500	2.78744000	-1.88503400
С	1.10560200	-0.85750500	-2.74936100
Н	-0.02843300	-1.42240900	-1.01404300
С	1.53471600	0.19304000	-3.56369500
Н	1.49313000	2.32501600	-3.88594300
Н	1.35140100	-1.88276900	-3.00812300
Н	2.12677000	-0.01302600	-4.45044000
С	-2.04278200	2.48848600	0.07663700
С	-2.18411800	3.38253200	1.15097200
С	-2.77824400	2.68277300	-1.09962000
С	-3.04765000	4.46926500	1.04341100
Н	-1.63339800	3.23253600	2.07359700
С	-3.61728900	3.79001200	-1.20716800
Н	-2.70661100	1.94409500	-1.88607900
С	-3.75695700	4.67796700	-0.14152200
Н	-3.16240800	5.15169600	1.88019300
Н	-4.18699500	3.93791400	-2.11916900
Н	-4.42625500	5.52940100	-0.22781500
С	-2.97020500	-2.89736000	-0.95663000
С	-5.20302000	-2.30288800	-0.26402700
С	-5.46746900	-3.63731500	0.03751700
С	-4.47898000	-4.60660200	-0.15450200
С	-3.23050600	-4.23408900	-0.65752200
Н	-5.94536400	-1.52564300	-0.11482600
Н	-6.44219800	-3.92545700	0.42405600
Н	-4.68254100	-5.64781600	0.08346200
Н	-2.46120300	-4.98693300	-0.81319600
С	-3.95051500	-1.92124300	-0.75654500
С	-3.64867900	-0.44866100	-0.97767700

0	-4.54992800	0.37871700	-0.74840900
0	-2.43782000	-0.18062500	-1.31569400
Н	-2.00879000	-2.58424900	-1.34731200
R3 and ani	ion (in Figure S74)		
Ν	-0.44823200	1.50218800	0.32205200
С	0.93618000	1.95850800	0.71417600
Н	1.59317900	1.12614200	0.45753500
Н	0.93077400	2.05262300	1.80227200
С	4.09968800	1.78516700	-0.67285300
Н	4.86890900	2.33055000	-1.24484800
Н	3.21521900	1.85972300	-1.32574400
С	2.82774300	3.63097100	0.63764500
Н	3.22054200	4.45785900	0.03321000
Н	2.69791000	4.02410400	1.65467700
С	3.84781400	2.47879100	0.67933800
Н	3.51197200	1.74142100	1.41910400
Н	4.79341400	2.86454900	1.07825900
С	-0.65982100	0.06764000	0.81405000
Н	-1.70195500	-0.19481100	0.56742700
Н	0.03238800	-0.53433500	0.21923100
С	1.44520200	3.24366800	0.07043200
Н	0.74794800	4.07102100	0.24157700
Н	1.51871600	3.11277500	-1.01298600
С	-0.62557600	1.46750600	-1.17278700
Н	-1.63836700	1.08659000	-1.35464000
Н	0.14946800	0.82613200	-1.59781800
Н	-0.53289000	2.48047300	-1.56373000
С	-1.51546900	2.40505900	0.88196700
Н	-1.46245800	2.38461900	1.96945500
Н	-2.47463400	2.02871300	0.50384000
Н	-1.33125800	3.41743300	0.52071900
С	-0.43795400	-0.16328300	2.30486100
Н	-0.99180600	0.57983100	2.88897400
Н	0.62156000	-0.07409600	2.58175200
С	-0.96076400	-1.55741600	2.69953200
Н	-0.88367600	-1.65075600	3.78996800
Н	-2.02271600	-1.60977400	2.43755900
С	-0.20405800	-2.71394300	2.03939300
Н	-0.55553800	-3.67683300	2.42478200
Н	0.87517900	-2.65103800	2.23147600
Н	-0.35535200	-2.72892700	0.95433700
С	4.81155800	-0.60905500	0.60839100
С	6.00785600	-2.35699300	-0.91297300

С	6.04185700	-1.52084200	0.37929300	
С	5.57443900	-1.56245200	-2.15936500	
С	4.36356200	-0.62156100	-1.95516200	
С	3.47394700	-1.38452500	0.84477700	
С	2.92539100	-2.14481300	-0.38016200	
С	3.00634500	-1.35670900	-1.70192100	
В	4.50590100	0.26283000	-0.66365900	
Н	4.99702900	-0.01713900	1.51440900	
Н	7.00619900	-2.77724900	-1.08956900	
Н	5.35079000	-3.21951300	-0.77556800	
Н	6.93230300	-0.87583100	0.35596400	
Н	6.17885300	-2.19025600	1.24055200	
Н	5.37756300	-2.26089600	-2.98514600	
Н	6.42023100	-0.94103400	-2.48727900	
Н	4.23351900	-0.02908900	-2.87184600	
Н	3.59768400	-2.08233800	1.68485500	
Н	2.71584500	-0.65913000	1.17583600	
Н	3.45338000	-3.09444100	-0.48958500	
Н	1.87947800	-2.41493300	-0.18870200	
Н	2.20592200	-0.59950800	-1.71127600	
Н	2.78758600	-2.02798200	-2.54357600	
С	-6.27648900	0.44045000	-1.40422700	
С	-6.20307800	-1.33360900	0.23024300	
С	-7.53816700	-1.63540200	-0.03409700	
С	-8.24595500	-0.89854800	-0.98712100	
С	-7.61159300	0.14051200	-1.67233100	
Н	-5.62922700	-1.88955700	0.96413200	
Н	-8.02933700	-2.44486600	0.50090000	
Н	-9.28716600	-1.13323300	-1.19484600	
Н	-8.15999600	0.71555900	-2.41483000	
С	-5.56215800	-0.29379800	-0.45178800	
С	-4.10760000	0.03109100	-0.15840300	
0	-3.52477200	-0.67397400	0.70829500	
0	-3.59603200	0.99490600	-0.81088700	
Н	-5.76003100	1.24204800	-1.92159400	
	х <i>г</i> г			
3 (In Figure 8		4 77700000	4 000 4 4000	
	-1.39295600	-1.///88800	-1.00344300	
Н	-1.91608500	-2.49991300	-2.23931100	
н	-0.49794400	-2.21142000	-1.22101300	
	1.84654300	-1.15445200	-1.394/3300	
н	1.08/41300	-2.23991600	-1.49804900	
н	1.08133400	-0.82200900	-0.67902500	
C	0.17296600	-0.83300200	-3.36353400	

Н	0.13736800	-1.88965100	-3.67028300
Н	0.04342800	-0.24940200	-4.28408000
С	1.55476500	-0.51337600	-2.76163400
н	1.64308400	0.57844700	-2.69099200
Н	2.32061100	-0.82001100	-3.48466800
С	-1.00577300	-0.52771400	-2.41281800
Н	-0.72948500	0.29464300	-1.74730600
Н	-1.88726600	-0.20293700	-2.97733000
С	4.58209900	-0.87806900	-1.75602000
С	4.82007300	-3.46230300	-1.47394800
С	4.69535300	-2.26402200	-2.43836900
С	3.86042600	-3.41867900	-0.26507700
С	3.71964400	-2.03095200	0.40611500
С	5.86730500	-0.44607600	-1.01359100
С	6.20808000	-1.26370000	0.25025400
С	5.00137700	-1.59717500	1.15415300
В	3.32630600	-0.95628500	-0.74376800
Н	4.41955700	-0.14342600	-2.56148300
Н	4.64572400	-4.39177800	-2.03447700
Н	5.85071700	-3.53265400	-1.11510400
Н	3.80007100	-2.41338800	-3.05817100
Н	5.54892100	-2.28461100	-3.13384800
Н	4.18706700	-4.17060600	0.47079300
Н	2.86505200	-3.74350200	-0.59997800
Н	2.92244400	-2.12782400	1.16400100
Н	6.73475200	-0.47374700	-1.69201200
Н	5.74449500	0.60475800	-0.72116700
Н	6.70799200	-2.19214300	-0.04187200
Н	6.95200800	-0.71143900	0.84167600
Н	4.76382900	-0.70837500	1.75128100
Н	5.30754100	-2.37212200	1.87523900
С	-1.44696200	5.02663300	0.75395500
С	-1.52962400	3.98118000	-1.41797700
С	-2.20792700	5.08853700	-1.92902500
С	-2.52040700	6.16267400	-1.09162200
С	-2.13655800	6.12928300	0.25166200
Н	-1.28027400	3.13531200	-2.05078700
Н	-2.48932200	5.11769100	-2.97911400
Н	-3.05284900	7.02452800	-1.48587200
Н	-2.37289800	6.96653200	0.90381900
С	-1.15001200	3.93707100	-0.07139300
С	-0.43244300	2.71927500	0.49960100
0	0.10951300	2.84668400	1.62218500
0	-0.46457200	1.66683500	-0.21731200

С	3.97128800	2.48814600	2.18239400
С	2.87937700	1.42520700	2.36170400
С	2.33554300	0.93658300	1.05015900
С	2.51825900	1.69784000	-0.18327400
С	3.26940800	3.00998000	-0.20182000
С	3.49507200	3.57520000	1.20990600
Н	3.23943700	0.57461000	2.95310700
Н	2.01790800	1.86113700	2.87771800
Н	4.21208000	2.92815500	3.15707700
Н	4.89028200	2.02092700	1.80524300
Н	4.22484900	2.85092000	-0.71761700
Н	2.69591600	3.72272000	-0.80486600
Н	4.21613800	4.39962000	1.16463700
Н	2.54424700	3.98122200	1.57516800
Н	1.48544800	0.26929600	1.08099300
0	3.36448000	0.50861500	0.07214300
Н	1.78146900	1.52404500	-0.95337100
Н	-1.12398100	4.97997500	1.78881500
Р	-2.43423800	-1.50242200	-0.12197500
С	-1.40038100	-1.07484200	1.28993700
С	-1.61817900	0.08763700	2.03296700
С	-0.36228200	-1.95661100	1.64025900
С	-0.80236600	0.37143400	3.12693300
Н	-2.39522500	0.78429100	1.74744600
С	0.43237400	-1.67762100	2.74695200
Н	-0.17439800	-2.85406500	1.05858400
С	0.20890800	-0.51465100	3.49073100
Н	-0.93950900	1.30300700	3.66155300
Н	1.23832500	-2.35386100	3.01266600
Н	0.84606000	-0.28891800	4.34020400
С	-3.22685400	-3.09058100	0.26955300
С	-3.78484400	-3.87546700	-0.75160700
С	-3.33503500	-3.51031600	1.60263600
С	-4.43153700	-5.06954800	-0.44126900
Н	-3.72803600	-3.55557800	-1.78717800
С	-3.98254700	-4.70696500	1.90676100
Н	-2.90729500	-2.90729100	2.39566400
С	-4.52802700	-5.48773100	0.88749400
Н	-4.85749900	-5.67339700	-1.23659600
Н	-4.05792100	-5.02848400	2.94096700
Н	-5.02875400	-6.42108800	1.12682300
С	-3.74044000	-0.28584900	-0.40106900
С	-3.39763200	1.05029400	-0.67328000
С	-5.08813700	-0.67755700	-0.34601500

С	-4.41152900	1.98336300	-0.88767600
Н	-2.35279200	1.36450700	-0.67486100
С	-6.08834400	0.26566700	-0.57092700
Н	-5.35580800	-1.70454900	-0.12510500
С	-5.75093400	1.59321100	-0.84217400
Н	-4.13884200	3.01512200	-1.08605700
Н	-7.13043000	-0.03685900	-0.52819800
Н	-6.53503900	2.32579100	-1.01173700
3 (in Figure 8)	TS (P)		
С	0.98058400	-2.16823300	1.38086400
н	1.37639700	-3.06070300	1.87930400
н	0.12714300	-2.49564700	0.78131200
С	-2.22179300	-1.46173800	1.07096400
н	-2.15805500	-2.55361800	0.94740800
н	-1.36708900	-1.05813400	0.50930700
С	-0.70678600	-1.59281900	3.18662300
н	-0.68958700	-2.69034800	3.26828400
н	-0.65079900	-1.21429100	4.21542900
С	-2.03600600	-1.13688900	2.55766800
н	-2.12767600	-0.05483200	2.71027000
н	-2.85896500	-1.58342800	3.13061500
С	0.55237100	-1.12224800	2.42508300
Н	0.37608100	-0.14815800	1.95486700
Н	1.38589000	-0.97846700	3.12132400
С	-4.96820300	-1.35001100	1.10640600
С	-4.92673200	-3.53827600	-0.31350800
С	-5.05694800	-2.89364300	1.08441900
С	-3.83837400	-2.92324100	-1.22104900
С	-3.75367200	-1.37780900	-1.18794700
С	-6.17449600	-0.64303100	0.45196800
С	-6.30307400	-0.84006800	-1.07206400
С	-4.97747300	-0.70715300	-1.85170600
В	-3.59004900	-0.91359300	0.36792700
н	-4.96594500	-1.04750900	2.16612600
Н	-4.72739300	-4.61342500	-0.19713000
н	-5.89120100	-3.48033400	-0.82610400
Н	-4.25609000	-3.28775900	1.72635600
Н	-5.99991300	-3.23913800	1.53768900
Н	-4.00420400	-3.27734300	-2.25159900
Н	-2.86150800	-3.32937300	-0.92257900
Н	-2.87281400	-1.11224200	-1.80337900
Н	-7.11965200	-0.95661700	0.92399700
Н	-6.07275900	0.43110100	0.65449400

Н	-6.74627200	-1.81928800	-1.27685700
Н	-7.02298800	-0.11014100	-1.46948700
Н	-4.76180600	0.36092600	-1.97852300
Н	-5.12846800	-1.09944000	-2.87085600
С	1.44197800	4.60401500	-1.31452700
С	3.01241200	3.66004800	0.25037100
С	4.03027200	4.44428600	-0.29196300
С	3.75542800	5.30825800	-1.35431100
С	2.45503300	5.39083300	-1.86033500
Н	3.21148500	2.98697800	1.07457300
Н	5.03755800	4.38357200	0.11311600
Н	4.54730800	5.91859300	-1.78073700
Н	2.23414200	6.06951600	-2.68046700
С	1.71396700	3.72128600	-0.26302600
С	0.61565300	2.80759500	0.26189300
0	-0.52420200	2.97280700	-0.26105200
0	0.92152500	1.95833200	1.14401400
С	-4.27581300	3.56347400	0.41764900
С	-3.83660000	2.78766400	-0.83192600
С	-2.98737000	1.58202900	-0.48875400
С	-2.10959000	1.66268900	0.66386800
С	-2.35880300	2.62956600	1.78593200
С	-3.07083400	3.90112900	1.30574600
Н	-4.70497400	2.46890500	-1.41939800
Н	-3.21975200	3.43252700	-1.47165200
Н	-4.79396700	4.48073000	0.11349400
Н	-4.99587000	2.95875600	0.98272900
Н	-2.97007300	2.11713000	2.53863900
Н	-1.39451300	2.85499900	2.24732700
Н	-3.38725400	4.49475800	2.17171900
Н	-2.35390500	4.50149200	0.73493600
Н	-2.58918700	1.05406100	-1.35323500
0	-3.57490000	0.69863600	0.49182200
Н	-1.31006300	0.94932000	0.74664100
Н	0.42701000	4.64043600	-1.69483900
Р	2.26107400	-1.63146700	0.19524700
С	1.60750400	-0.48154100	-1.02105800
С	2.39017500	0.59162800	-1.46567100
С	0.34432900	-0.71897700	-1.58699300
С	1.90270400	1.43446100	-2.46145300
Н	3.35557300	0.79339200	-1.01678700
С	-0.13659400	0.13533900	-2.57418000
Н	-0.27053500	-1.55039100	-1.26153600
С	0.63766900	1.21429100	-3.00433400

Н	2.49519800	2.28499200	-2.77840700
Н	-1.12182600	-0.04036600	-2.99378600
Н	0.24854400	1.89258300	-3.75706900
С	2.82331500	-3.11061000	-0.69343800
С	3.10724400	-4.29541700	0.00463000
С	2.98995500	-3.06638300	-2.08447100
С	3.55198700	-5.42090200	-0.68474800
Н	2.99011300	-4.34256900	1.08275500
С	3.43394500	-4.19750000	-2.76800800
Н	2.76545400	-2.15506100	-2.62775700
С	3.71392100	-5.37297300	-2.07115700
Н	3.76737000	-6.33527800	-0.14061700
Н	3.55636900	-4.15943100	-3.84600500
Н	4.05579000	-6.25342000	-2.60690000
С	3.65913100	-0.90177400	1.07311000
С	3.47680700	0.33363600	1.71935300
С	4.88887600	-1.57275300	1.14654100
С	4.53584600	0.87517400	2.44682200
Н	2.54015700	0.88684000	1.62503200
С	5.93591900	-1.01471900	1.87743000
Н	5.03107100	-2.51757400	0.63370300
С	5.75812700	0.20595000	2.53072000
Н	4.40056300	1.82986000	2.94625700
Н	6.88914400	-1.53170800	1.93234200
Н	6.57554800	0.63849100	3.10045600
3 (in Figure	8) product		
С	1.15873100	-2.08348300	1.43361100
Н	1.60202500	-2.96705400	1.90714200
Н	0.31050200	-2.43337400	0.83851100
С	-1.99990800	-1.50002200	1.05871400
Н	-1.75566100	-2.55547300	0.85586600
Н	-1.21105000	-0.90938800	0.56609000
С	-0.56279100	-1.63447300	3.23619600
Н	-0.47173700	-2.72863100	3.31497200
Н	-0.55089900	-1.25749100	4.26755300
С	-1.90560300	-1.26845700	2.56955900
Н	-2.12301600	-0.21413100	2.78303900
Н	-2.69847600	-1.83443200	3.07485500
С	0.68286100	-1.08644100	2.50438500
Н	0.45189500	-0.11576800	2.05572900
Н	1.50491500	-0.91858000	3.20967600
С	-4.72134700	-1.85068200	1.02311700
С	-4.26215800	-3.94656700	-0.46156800

С	-4.52978200	-3.38076900	0.95063900
С	-3.29199100	-3.11470400	-1.32961000
С	-3.47551900	-1.58343500	-1.23563700
С	-6.02095400	-1.34676600	0.36225900
С	-6.07667900	-1.50205000	-1.17116300
С	-4.77974300	-1.09510600	-1.90119400
В	-3.43845100	-1.10064200	0.34433800
Н	-4.80128300	-1.59327200	2.09319600
Н	-3.87423600	-4.97289300	-0.37315000
Н	-5.21384200	-4.04695000	-0.99228100
Н	-3.68004900	-3.64622700	1.59732200
Н	-5.39976100	-3.91228100	1.37223200
Н	-3.38296300	-3.45936900	-2.37444900
Н	-2.26156400	-3.35924100	-1.02964300
Н	-2.64706600	-1.14663000	-1.82857100
Н	-6.90885800	-1.84041300	0.79373300
Н	-6.10857400	-0.27985700	0.60157300
Н	-6.32774400	-2.53696200	-1.42698300
Н	-6.90953000	-0.89965000	-1.56402800
Н	-4.74443300	0.00021000	-1.94109900
Н	-4.84475300	-1.43802500	-2.94893800
С	0.52100300	4.53207300	-1.33777600
С	2.46062000	3.96325300	-0.00411200
С	3.24920300	4.79938700	-0.78995400
С	2.67621300	5.49979600	-1.85504500
С	1.31118100	5.36906300	-2.12304200
Н	2.88892900	3.40372900	0.81984900
Н	4.30850900	4.90719000	-0.57438800
Н	3.29075000	6.15109500	-2.47029300
Н	0.86340600	5.91959900	-2.94535700
С	1.09688200	3.81731000	-0.28099100
С	0.30344800	2.84857800	0.53092000
0	-0.97075900	2.81018600	0.16845000
0	0.80223000	2.16363600	1.41778500
С	-4.47595300	3.21859300	0.37008200
С	-3.73228400	2.46186300	-0.73711400
С	-2.87381200	1.32639400	-0.14946000
С	-1.88756600	1.90313400	0.88525400
С	-2.59822700	2.68957600	1.97994700
С	-3.49413500	3.79334400	1.40121800
Н	-4.44332300	2.02733200	-1.44660600
Н	-3.08934600	3.15671800	-1.29743800
Н	-5.08852300	4.02213300	-0.05855400
Н	-5.15537600	2.51637100	0.86600500

-3.21448200	1.96281000	2.52004500	
-1.86147800	3.09533100	2.68437900	
-4.03634900	4.29296900	2.21384100	
-2.86531500	4.55811000	0.92371100	
-2.27880500	0.87234900	-0.95745600	
-3.68204000	0.39742600	0.49501700	
-1.28215800	1.10731800	1.30651400	
-0.53630000	4.41226300	-1.54254900	
2.38993300	-1.46549600	0.23948000	
1.66191800	-0.33944900	-0.96168400	
2.39300200	0.76935100	-1.41437900	
0.41222700	-0.64051000	-1.52712900	
1.86752200	1.58055200	-2.41665900	
3.35301700	1.01119700	-0.97321400	
-0.10704200	0.18334000	-2.52316100	
-0.17037000	-1.49156400	-1.19469500	
0.61773100	1.29108700	-2.96511000	
2.41934700	2.45619800	-2.74142700	
-1.08561200	-0.04174500	-2.93337200	
0.20124400	1.93958800	-3.72965100	
3.03327700	-2.89618100	-0.67013100	
3.41135900	-4.05970900	0.01943900	
3.15961900	-2.84086500	-2.06497000	
3.91055300	-5.15354300	-0.68316000	
3.32189900	-4.11544400	1.09992700	
3.65737700	-3.94128900	-2.76132000	
2.86079700	-1.94742800	-2.60188800	
4.03177300	-5.09553300	-2.07340700	
4.19770500	-6.05243200	-0.14656800	
3.74619400	-3.89676600	-3.84229800	
4.41421300	-5.95262800	-2.61937700	
3.75895600	-0.64207000	1.08630000	
3.51266100	0.57100600	1.75315800	
5.04255300	-1.20568300	1.09417300	
4.55535900	1.20076700	2.42954500	
2.53165700	1.03562500	1.72653400	
6.07574400	-0.56395400	1.77582000	
5.23664500	-2.13383200	0.56818000	
5.83274700	0.63610700	2.44483800	
4.36387500	2.13641000	2.94631000	
7.06949800	-1.00122900	1.77989600	
6.63959300	1.13327400	2.97529500	
	-3.21448200 -1.86147800 -2.86531500 -2.27880500 -3.68204000 -1.28215800 -0.53630000 2.38993300 1.66191800 2.39300200 0.41222700 1.86752200 3.35301700 0.41222700 1.86752200 3.35301700 0.10704200 -0.10704200 0.20124400 3.03327700 3.41135900 3.15961900 3.91055300 3.32189900 3.15961900 3.91055300 3.32189900 3.65737700 2.86079700 4.03177300 4.03177300 4.19770500 3.74619400 4.41421300 3.75895600 3.51266100 5.04255300 4.55535900 2.53165700 6.07574400 5.23664500 5.83274700 4.36387500 7.06949800 6.63959300	-3.214482001.96281000-1.861478003.09533100-4.036349004.29296900-2.865315004.55811000-2.278805000.87234900-3.682040000.39742600-1.282158001.10731800-0.536300004.412263002.38993300-1.465496001.66191800-0.339449002.393002000.769351000.41222700-0.640510001.867522001.580552003.353017001.01119700-0.107042000.18334000-0.17037000-1.491564000.617731001.291087002.419347002.45619800-1.08561200-0.041745000.201244001.939588003.03327700-2.896181003.15961900-2.840865003.91055300-5.153543003.32189900-4.115444003.65737700-3.941289002.86079700-1.947428004.03177300-5.095533004.19770500-6.052432003.75895600-0.642070003.512661000.571006005.04255300-1.205683004.555359001.200767002.531657001.035625006.07574400-0.563954005.23664500-2.133832005.832747000.636107004.363875002.136410007.06949800-1.001229006.639593001.13327400	-3.214482001.962810002.52004500-1.861478003.095331002.68437900-4.036349004.292969002.21384100-2.865315004.558110000.92371100-2.278805000.87234900-0.95745600-3.682040000.397426000.49501700-1.282158001.107318001.30651400-0.536300004.41226300-1.542549002.38993300-1.465496000.239480001.66191800-0.33944900-0.961684002.393002000.76935100-1.414379000.41222700-0.64051000-1.527129001.867522001.58055200-2.416659003.353017001.01119700-0.97321400-0.107042000.18334000-2.52316100-0.17037000-1.49156400-1.194695000.617731001.29108700-2.965110002.419347002.45619800-2.74142700-1.08561200-0.04174500-2.96511003.03227700-2.89618100-0.670131003.41135900-4.059709000.019439003.15961900-2.84086500-2.064970003.91055300-5.15354300-0.683160003.32189900-4.115444001.099927003.65737700-3.94128900-2.761320002.86079700-1.94742800-2.611888004.03177300-5.9553300-2.073407004.19770500-6.05243200-0.146568003.74619400-3.89676600-3.842298004.41421300-5.95262800-2.611387003.50

R3 (in Figure 8) reactant

Ν	-3.41526200	-2.62088100	0.82415400
С	-2.26854700	-2.69309700	-0.18745200
Н	-1.93396100	-1.65569700	-0.29437400
Н	-2.72437400	-3.01029900	-1.12845500
С	1.37234100	-1.81294200	0.13851800
Н	1.67013600	-2.69294500	0.72859500
Н	0.63405400	-1.30027600	0.77488100
С	-0.07349100	-3.66399700	-0.92694100
Н	0.65968500	-4.43757900	-0.66398000
Н	-0.54310600	-3.98968500	-1.86709800
С	0.67489300	-2.33614500	-1.13426200
Н	-0.01789600	-1.58584600	-1.53741700
Н	1.41241700	-2.50571200	-1.92664600
С	-4.39879400	-1.54498000	0.36145300
Н	-5.05616900	-1.35853800	1.21599400
Н	-3.77445700	-0.66558900	0.17921800
С	-1.13498100	-3.63699700	0.18668500
Н	-1.50761600	-4.65688800	0.34611200
Н	-0.65362400	-3.30992700	1.11207400
С	-2.87821400	-2.18905700	2.16497300
Н	-3.72774100	-2.05899500	2.83842300
Н	-2.32436300	-1.24599800	2.03736800
Н	-2.22708900	-2.97350600	2.54853200
С	-4.10314500	-3.93810600	0.96756900
Н	-4.40655100	-4.29909200	-0.01463700
Н	-4.98055400	-3.80602300	1.60367900
Н	-3.42043400	-4.65118500	1.42730700
С	-5.23489900	-1.89404300	-0.86705200
Н	-5.95982700	-2.68041400	-0.62521100
Н	-4.60423600	-2.27271200	-1.67950700
С	-5.97983500	-0.64179700	-1.37071600
Н	-6.80434100	-0.96851900	-2.01596600
Н	-6.44756400	-0.13327400	-0.51594700
С	-5.08059100	0.33452800	-2.13697200
Н	-5.64104300	1.23238100	-2.41969700
Н	-4.71146600	-0.13068300	-3.05945000
Н	-4.20645900	0.64123000	-1.55365200
С	3.69847700	-1.27297800	-1.27249300
С	4.95373700	-2.91431900	0.32062000
С	4.23653100	-2.70578500	-1.03028900
С	4.24712900	-2.27530000	1.53633800
С	3.67300300	-0.85695700	1.29025700
С	4.80843200	-0.21165800	-1.43476200
С	5.62297500	0.09591000	-0.16078400

С	4.78262700	0.20689700	1.12856000	
В	2.73124900	-0.93232800	-0.02505500	
Н	3.15320200	-1.30018200	-2.23018100	
Н	5.06921500	-3.99248800	0.50070700	
Н	5.97286300	-2.52436500	0.24903700	
Н	3.38813000	-3.40313100	-1.08517800	
Н	4.92125300	-3.00248800	-1.84005800	
Н	4.95148300	-2.25914800	2.38255800	
Н	3.42457400	-2.93266800	1.84916200	
Н	3.09912500	-0.59023100	2.19429500	
н	5.50617500	-0.50219600	-2.23604600	
Н	4.33123000	0.71790700	-1.77218300	
н	6.39395600	-0.66909900	-0.02765300	
н	6.17404200	1.03545900	-0.30831900	
н	4.31227000	1.19716700	1.14365100	
Н	5.46278300	0.18589900	1.99462600	
С	-2.15570700	3.21948400	-0.57139700	
С	-1.51158000	3.27127000	1.75407600	
С	-1.50393100	4.66525000	1.72284000	
С	-1.82190500	5.34000700	0.54094400	
С	-2.15013600	4.61375200	-0.60674100	
н	-1.27016800	2.72215900	2.65818500	
н	-1.25113000	5.22792500	2.61789900	
н	-1.81426200	6.42650600	0.51491900	
н	-2.39947000	5.13554900	-1.52719700	
С	-1.83197400	2.53741600	0.60698400	
С	-1.82773400	1.01838400	0.64559300	
0	-1.47022500	0.47052900	1.72149100	
0	-2.17705100	0.42198300	-0.42148100	
С	1.73638800	3.88289500	-0.14871900	
С	1.88764500	2.82924300	0.96102400	
С	1.37303200	1.46341000	0.56179600	
С	1.00715100	1.15476800	-0.82963100	
С	1.13465700	2.18795200	-1.91586600	
С	2.09268300	3.32377900	-1.53167300	
н	2.93828900	2.72393800	1.25402800	
н	1.33987100	3.14795600	1.85288900	
н	0.69950000	4.23656400	-0.16519100	
н	2.36384200	4.75016300	0.08722600	
н	1.44934700	1.69681900	-2.84481400	
н	0.12769500	2.58917000	-2.08496600	
н	3.12463400	2.95185200	-1.53402800	
н	2.03505800	4.11594300	-2.28679100	
н	0.91830200	0.84959600	1.33153000	

0	2.29272300	0.68960000	-0.29776100
Н	0.29158900	0.35745800	-0.98566400
Н	-2.40721800	2.63391100	-1.44925700
R3 (in Figure	8) TS (N)		
N	-2.33232400	-2.80572500	-0.16191500
С	-1.06488100	-3.20550400	-0.92382900
Н	-1.19711600	-4.26054500	-1.18253700
Н	-0.24959300	-3.13285600	-0.20436600
С	1.81043800	-1.40615100	-0.64005700
Н	2.12983800	-2.37619400	-0.23089900
Н	0.81812200	-1.22757000	-0.19180800
С	0.68139500	-2.61984000	-2.65435800
Н	1.02175600	-3.61925200	-2.34225300
Н	0.68517300	-2.63341500	-3.75107500
С	1.67489600	-1.55601900	-2.16042000
Н	1.39216900	-0.59327300	-2.60720400
Н	2.66101200	-1.79138900	-2.57875600
С	-2.09755200	-1.55311700	0.68144100
Н	-1.69104400	-0.82261400	-0.01175500
Н	-3.09491600	-1.20782000	0.96476900
С	-0.77211200	-2.38833600	-2.17982700
Н	-0.94892400	-1.32074100	-2.01535700
Н	-1.47290900	-2.69034200	-2.96523300
С	-2.74667100	-3.95037000	0.70525800
Н	-1.89611700	-4.27835400	1.30164600
Н	-3.08770200	-4.76609800	0.06593000
Н	-3.55754900	-3.62461400	1.35909300
С	-3.45019900	-2.48487100	-1.11965500
Н	-3.54626800	-3.30546700	-1.83268100
Н	-3.21852400	-1.53687800	-1.61340300
Н	-4.36842800	-2.37723700	-0.54031200
С	-1.21629600	-1.69063600	1.91300900
Н	-0.19018000	-1.95807600	1.63812400
Н	-1.58996400	-2.46190800	2.59729900
С	-1.20770100	-0.33736300	2.64693700
Н	-0.90557000	0.44871600	1.94580000
Н	-2.23478300	-0.08943400	2.94631500
С	-0.29407500	-0.34650900	3.87243800
Н	0.74302900	-0.55742000	3.59069200
Н	-0.60925600	-1.10720300	4.59727100
Н	-0.31141100	0.62456800	4.37789500
С	4.29259600	-0.23972700	-0.85648200
С	5.08978500	-1.92372500	0.96788100

С	4.98031300	-1.58633800	-0.53474400
С	3.82758600	-1.61182000	1.80145200
С	3.13380400	-0.26886300	1.46486000
С	5.10647300	1.00030500	-0.42648700
С	5.26026900	1.19276700	1.09579400
С	3.96934100	0.95201500	1.90744200
В	2.83644000	-0.23292800	-0.13720000
Н	4.20016000	-0.18425300	-1.95326600
Н	5.33715700	-2.98920200	1.08048100
Н	5.94089700	-1.38612200	1.39516900
Н	4.41050100	-2.38602300	-1.03018400
Н	5.99015400	-1.62507600	-0.97360700
Н	4.09846000	-1.64580800	2.86907300
Н	3.10076000	-2.42321500	1.65525800
Н	2.20468600	-0.25134500	2.06305800
Н	6.11098700	0.98726600	-0.87954900
Н	4.59690300	1.88183700	-0.83627900
Н	6.05032000	0.53382600	1.46879100
Н	5.61933900	2.21278700	1.29399200
Н	3.34165500	1.84737200	1.82531700
Н	4.23353200	0.87401900	2.97461900
С	-4.04116000	1.87003000	1.11835500
С	-5.00146800	0.75172900	-0.79455500
С	-6.24744500	0.74516100	-0.16829400
С	-6.38865700	1.28850100	1.11142400
С	-5.28312100	1.85260500	1.75272800
Н	-4.87022400	0.33792800	-1.78907900
Н	-7.11032100	0.32295100	-0.67739500
Н	-7.35786300	1.27958800	1.60308400
Н	-5.39205700	2.28339500	2.74466300
С	-3.88801600	1.30845200	-0.15456700
С	-2.51501000	1.24124900	-0.79970400
0	-1.60780400	1.94261600	-0.26070900
0	-2.36590900	0.43802000	-1.76302500
С	1.60909600	4.07759800	-0.86868200
С	1.38366200	3.32045300	0.44673900
С	1.17697400	1.83448700	0.22503400
С	0.45972900	1.42984500	-0.97422000
С	0.41317000	2.28778100	-2.20217900
С	0.48305000	3.78329000	-1.86831000
Н	2.22175000	3.47418300	1.13432300
Н	0.47633100	3.69307700	0.94022300
Н	1.66697700	5.15339100	-0.66568300
Н	2.57385200	3.77668200	-1.29530600

Н	1.26085900	1.99990200	-2.83635800
Н	-0.50117300	2.03184800	-2.74290700
Н	0.62510900	4.35886600	-2.79043300
Н	-0.47713800	4.08602400	-1.43480100
н	0.93884700	1.28609000	1.13612500
0	2.20200800	1.19449900	-0.55658600
н	0.08762100	0.42450900	-1.03158600
Н	-3.17050000	2.31209100	1.59047900
R3 (in Fig	ure 8) product		
Ν	1.09042900	2.74685500	1.24660600
С	0.60390700	2.60801600	-0.19166700
Н	0.96074800	1.62874500	-0.50046200
Н	1.13128100	3.37319800	-0.76508300
С	-0.63546900	-0.10908100	-1.71745700
Н	-1.27746800	-0.75364200	-2.33382400
Н	-1.25506300	0.10199900	-0.84328700
С	-1.20824400	2.42505400	-1.90628500
Н	-2.28974000	2.26212700	-1.98819900
Н	-0.97886300	3.32818200	-2.49107000
С	-0.44192300	1.22206900	-2.49099100
Н	0.61822100	1.49770100	-2.55040300
Н	-0.75314000	1.11344700	-3.53809600
С	2.57254700	2.39242500	1.29177300
Н	2.86912500	2.50491600	2.33960400
Н	2.61343700	1.33272200	1.03218700
С	-0.89695300	2.70131900	-0.41683000
Н	-1.28931000	3.68750600	-0.13735000
Н	-1.40951200	1.96499900	0.19952500
С	0.38792400	1.73838600	2.11730700
Н	0.86892300	1.74932600	3.09786900
Н	0.49172500	0.76262600	1.62528500
Н	-0.66462100	1.99526100	2.21251500
С	0.84180200	4.12191800	1.76944900
н	1.31598000	4.85520900	1.11767000
Н	1.25164200	4.19478100	2.77854100
Н	-0.23347200	4.29261800	1.79513800
С	3.48700500	3.21436300	0.38981000
Н	3.32212400	4.28698500	0.54732000
Н	3.27184300	2.99754100	-0.66138500
С	4.96698400	2.89492300	0.66879900
Н	5.57477600	3.59050000	0.07802000
Н	5.19289900	3.11032200	1.72268500
С	5.36488100	1.45645300	0.32763400

Н	6.43933600	1.30720800	0.47625800	
Н	5.13146400	1.22114000	-0.71611400	
Н	4.84157400	0.72076800	0.94618000	
С	2.16999900	-0.49367600	-1.52857800	
С	2.02085600	-1.91165700	-3.72633400	
С	2.39066300	-0.57032200	-3.06051900	
С	0.71619300	-2.52740300	-3.19543000	
С	0.60946700	-2.54333800	-1.65405800	
С	3.20151600	-1.32438400	-0.73768400	
С	3.12959900	-2.84540100	-0.98104200	
С	1.70298200	-3.44274600	-1.02689500	
В	0.65045600	-0.98969300	-1.11234400	
Н	2.37298200	0.56303600	-1.25931400	
Н	1.93771400	-1.75877100	-4.81221500	
Н	2.83624800	-2.62969300	-3.59811100	
Н	1.78617700	0.21072300	-3.53656600	
Н	3.43792000	-0.32984900	-3.31210600	
Н	0.62173900	-3.54797300	-3.60092400	
Н	-0.13110600	-1.96096300	-3.60435100	
Н	-0.36195200	-3.01880900	-1.42714800	
Н	4.23111100	-0.99812700	-0.95973800	
Н	3.03493900	-1.12783200	0.32987200	
Н	3.65170600	-3.07287200	-1.91548800	
Н	3.70881000	-3.36009700	-0.19985400	
Н	1.40771000	-3.69522700	-0.00306600	
Н	1.75275400	-4.40941500	-1.55501100	
С	-4.55493500	1.54287200	0.09539500	
С	-4.02549800	-0.57614400	-0.95865100	
С	-4.89683200	-0.26891700	-2.00048600	
С	-5.59386900	0.94134400	-1.99878400	
С	-5.42374800	1.84744200	-0.94875500	
Н	-3.46011900	-1.49953400	-0.96243100	
Н	-5.02389700	-0.96935500	-2.82048500	
Н	-6.26791600	1.17994600	-2.81688300	
Н	-5.96647900	2.78841100	-0.94698700	
С	-3.85167600	0.33229500	0.09272200	
С	-2.88949700	0.08174000	1.19976100	
0	-2.27793500	-1.10153900	1.08793900	
0	-2.67271000	0.89287100	2.09216700	
С	0.56522000	-3.43566600	3.22942200	
С	1.07122100	-2.31661800	2.31332500	
С	0.02593700	-1.87381900	1.26745500	
С	-1.23551000	-1.44168600	2.03866700	
С	-1.77948000	-2.55256200	2.93672000	

С	-0.72234200	-3.01428600	3.94654100
Н	1.34599200	-1.43751000	2.91688500
Н	1.97641100	-2.62369600	1.78298700
Н	0.36736900	-4.33282900	2.62582900
Н	1.33630100	-3.71287500	3.95918900
Н	-2.68101600	-2.19318500	3.44711100
Н	-2.08253600	-3.39567500	2.30189200
Н	-0.49783900	-2.18961700	4.63891400
Н	-1.11968200	-3.83567900	4.55488700
Н	-0.26826600	-2.74865500	0.67338900
0	0.55314500	-0.86823800	0.45349300
Н	-1.03154000	-0.55216800	2.63721000
Н	-4.39908200	2.23034800	0.91968700

Figure S75. ¹¹B{¹H} NMR spectra of key intermediates for **3**-mediated ROAC of CHO and PA. a-d donated bottom to upper spectra. (a) **3** in CDCl₃, (b) **3**/CHO (1/2 molar ratio) in CDCl₃, (c) **3**/CHO (1/2 molar ratio) in THF–d₈, and (d) **3**/CHO/PA (1/1/2 molar ratio) in THF–d₈, 128 MHz, 298 K, the signal of proposed species overlapped with the resonance generated from borosilicate glass.

References

1 Yang, G.-W.; Zhang, Y.-Y.; Xie, R.; Wu, G.-P. Scalable Bifunctional Organoboron Catalysts for Copolymerization of CO₂ and Epoxides with Unprecedented Efficiency. *J.*

Am. Chem. Soc. 2020, 142, 12245-12255.

2 Xie, R.; Zhang Y.-Y.; Yang G.-W.; Zhu X.-F.; Li B.; Wu G.-P. *Angew. Chem. Int. Ed.* **2021**, *60*, 19253-19262.