Supporting information for

# Synthesis and properties of cyclic olefin polymers by ring-opening metathesis (co)polymerization of α-methyl-substituted norbornene lactones

Sae Kiyohara,<sup>1</sup> Narumi Miyasako,<sup>1</sup> Yoshiya Ota,<sup>2</sup> Shin-ichi Matsuoka,<sup>1</sup>\* Masato Suzuki<sup>1</sup>

1. Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute

of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan

2. R&D Enhancement Dept., Frontier Materials Laboratories, Osaka Gas Chemicals Co., Ltd., 5-11-61 Torishima, Konohana-ku, Osaka 554-0051, Japan

Corresponding Author Shin-ichi Matsuoka <u>http://orcid.org/0000-0001-7488-9971;</u> Email: <u>matsuoka.shinichi@nitech.ac.jp</u> Fax: +81-52-735-7254; Tel: +81-52-735-7254;

| EXPERIMENTAL SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                  |
| Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                  |
| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                  |
| Monomer Synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                  |
| Polymerizations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                  |
| Hydrogenation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                  |
| Table S1. Hydrogenation of poly( <i>endo</i> -MNBL) and poly( <i>endo</i> -MNBL- <i>co-exo</i> -MNBL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .11                |
| Table S2. Hydrogenation of poly( <i>endo</i> -NBL- <i>co</i> -TCD) and poly( <i>exo</i> -NBL- <i>co</i> -TCD).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .11                |
| Table S3. Hydrogenation of poly(endo-MNBL-co-NB) <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .12                |
| Figure S1. Time-conversion plots of the copolymerization of <i>endo</i> -MNBL and <i>exo</i> -MNBL by G3 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
| CH <sub>2</sub> Cl <sub>2</sub> at $-20$ °C (Kinetic plots of ln([M <sub>0</sub> ]/[M]) versus time is shown in Figure 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                 |
| Figure S2 SEC profiles of before and after the hydrogenation of (a) poly( <i>endo</i> -MNBL) (CHCl <sub>2</sub> as the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| eluent) and (b) poly( <i>endo</i> -NBL) (DMF as the eluent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                 |
| Figure S3 Raman spectra of before (black) and after (red) the hydrogenation of (a) poly( <i>endo</i> -NBL- <i>gr</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .15<br>ad <b>.</b> |
| TCD) (entry 1 Table 2) and (b) poly(endo-NBL-ran-TCD) (entry 2 Table 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                 |
| Figure S4 $T$ values of poly(ero-NBL -co-TCD)s at various compositions of ero-NBL unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                 |
| Figure S5. T values of (a) poly(ando-MNBI -ran-NB)s and (b) H-poly(ando-MNBI -ran-NB)s at vario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 1 T              |
| compositions of ando MNBL unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | us<br>1Λ           |
| Eigure S6 DSC survey and T values of poly(ando MNPL) and H poly(ando MNPL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                 |
| Figure S0. DSC curves and $T_g$ values of poly(endo-WINDL) and H-poly(endo-WINDL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .13                |
| NDL ugn TCD) (antry 2 in Table 2) and naly(gua NDL ugn TCD) (entry 4 in Table 2), poly(endo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                 |
| $\mathbf{NBL}$ -ran-TCD) (entry 2 in Table 2) and poly(exo-NBL-ran-TCD) (entry 4 in Table 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .13                |
| Figure S8. DSC curves and $T_g$ values of H-poly( <i>endo</i> -NBL- <i>grad</i> -TCD) (entry 1 in Table S2), H-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
| poly(enao-NBL-ran-TCD) (entry 2 in Table S2), and H-poly(exo-NBL-ran-TCD) (entry 4 in Table S2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ).<br>16           |
| Eigure S0 DSC survey and T values of poly(and a MNPL of NP); compared with the corresponding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .10                |
| homonolymore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                 |
| Eigung S10, DSC survey and T values of nalv(ande MNDL van ND); with various compositions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                 |
| Figure S10. DSC curves and $T_g$ values of poly( <i>endo</i> -MNDL- <i>ran</i> -NB)s with various compositions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .1/                |
| Figure S11. DSC curves and $T_g$ values of H-poly( <i>endo</i> -ivityBL-co-ivB)s compared with the corresponding to the second | 17                 |
| nomopolymers. $T_{T} = 1$ (11 1 ( 1 NOIDL ) ND) $T_{T} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                 |
| Figure S12. DSC curves and $I_g$ values of H-poly( <i>endo</i> -MINBL- <i>ran</i> -NB)s with various compositions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .18                |
| Figure S13. IGA curves of poly( <i>endo</i> -MINBL) and H-poly( <i>endo</i> -MINBL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .18                |
| Figure S14. TGA curves of poly( <i>exo</i> -NBL- <i>ran</i> -TCD) and H-poly( <i>exo</i> -NBL- <i>ran</i> -TCD) (NBL/TCD =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                 |
| 53/4')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .19                |
| Figure S15. TGA curves of poly( <i>endo</i> -MNBL- <i>ran</i> -NB) and H-poly( <i>endo</i> -MNBL- <i>ran</i> -NB) ( <i>endo</i> -MNB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iL                 |
| /NB = 52/48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .19                |
| Figure S16. XRD patterns of H-poly(NBL)s and ARTON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .20                |
| Figure S17. XRD patterns of poly(NBL-co-TCD)s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .20                |
| Figure S18. XRD patterns of H-poly(NBL-co-TCD)s compared with H-poly(TCD).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .21                |
| Figure S19. XRD patterns of H-poly( <i>endo</i> -MNBL) and H-poly(MNBL-co-NB)s with heat hysteresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| (annealed at 200 °C for 30 min).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .21                |
| Figure S20. Water contact angle (°) at various compositions of endo-MNBL in H-poly(MNBL-ran-NB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )s.                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .22                |
| Figure S21. Pictures of water contact angle measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .22                |
| Figure S22. <sup>1</sup> H NMR spectrum of <i>endo</i> -MNBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .23                |
| Figure S23. <sup>13</sup> C NMR spectrum of <i>endo</i> -MNBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .23                |

## CONTENTS

| Figure S24. <sup>1</sup> H NMR spectrum of a mixture of <i>exo</i> -MNBL and <i>endo</i> -MNBL  | 24 |
|-------------------------------------------------------------------------------------------------|----|
| Figure S25. <sup>13</sup> C NMR spectrum of a mixture of <i>exo</i> -MNBL and <i>endo</i> -MNBL | 24 |
| Figure S26. <sup>1</sup> H NMR spectrum of poly( <i>endo</i> -MNBL)                             | 25 |
| Figure S27. <sup>13</sup> C NMR spectrum of poly( <i>endo</i> -MNBL)                            | 25 |
| Figure S28. <sup>1</sup> H NMR spectrum of poly(endo-MNBL-co-exo-MNBL).                         |    |
| Figure S29. <sup>1</sup> H NMR spectrum of poly( <i>endo</i> -NBL-grad-TCD).                    | 27 |
| Figure S30. <sup>1</sup> H NMR spectrum of poly( <i>exo</i> -NBL- <i>ran</i> -TCD).             |    |
| Figure S31. <sup>1</sup> H NMR spectrum of poly(endo-MNBL-ran-NB).                              | 29 |
| Figure S32. <sup>1</sup> H NMR spectrum of H-poly(endo-MNBL)                                    |    |
| Figure S33. <sup>13</sup> C NMR spectrum of H-poly(endo-MNBL)                                   |    |
| Figure S34. <sup>1</sup> H NMR spectrum of H-poly(endo-MNBL-co-exo-MNBL)                        |    |
| Figure S35. <sup>1</sup> H NMR spectrum of H-poly(exo-NBL-grad-TCD).                            |    |
| Figure S36. <sup>1</sup> H NMR spectrum of H-poly(endo-MNBL-ran-NB).                            |    |
| Reference                                                                                       |    |

#### **EXPERIMENTAL SECTION**

#### Instrumentation

<sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained on a Bruker Avance III HD spectrometer (400 MHz for <sup>1</sup>H, 100 MHz for <sup>13</sup>C). The chemical shifts were reported in ppm relative to tetramethylsilane in CDCl<sub>3</sub> (0.00 ppm for <sup>1</sup>H), and the residual solvent CDCl<sub>3</sub> (77.10 ppm for <sup>13</sup>C). Size exclusion chromatography (SEC) was performed using a JASCO EXTREMA system with a RI-4035 (JASCO) detector using CHCl<sub>3</sub> as the eluent at 40 °C with a flow rate of 0.3 mL/min. Two tandem HK-404L columns (Shodex) were calibrated against polystyrene standards (the molecular weights ranging from  $1.20 \times 10^3$  to  $2.61 \times 10^6$ ). Gas chromatography (GC) analysis was performed on a GC-2014 (Shimadzu) system equipped with a flame ionization detector and a ZB-5 fused-silica capillary column (Zebron). The thermogravimetric analysis (TGA) was carried out with a DTG-60 (Shimadzu) instrument at a heating rate of 10 °C/min under a nitrogen atmosphere. Differential scanning calorimetry (DSC) measurement was performed on a DSC60-Plus (Shimadzu) apparatus operating with a heating rate of 10 °C/min under a nitrogen atmosphere (FC-60A, Shimadzu). Glass transition temperature  $(T_g)$  was determined at the onset of the transition during the second heating scan. Powder X-ray diffraction (XRD) patterns were obtained with a Rigaku SmartLab SE X-ray diffractometer with monochromatic Cu-Ka radiation of 60 kV and 60 mA. Scanning was performed in 0.01° steps at a speed of 1.5 °/min in  $2\theta$  angle ranging from 5 to 30°. The samples were measured without heat hysteresis unless otherwise noted. The samples of water contact angle were prepared by the spin-coating (1000 rpm for 60 sec and 5000 rpm for 10 sec) of the polymer in CHCl<sub>3</sub> (4.0 mg/0.5 mL) on a glass plate and then drying at 100 °C under reduced pressure for 2 h. Raman spectra were obtained with NRS-3300 (JASCO) with the excitation wavelength of 532.08 nm. Refractive indexes were measured by immersion liquid method. For the measurement of the birefringence,  $\Delta n$ , sample films were uniaxially stretched with a drawn ratio of 2.0 at  $T_g$  + 20 °C. The retardation (Re) was measured by

RET-100 instrument (Osaka Electonics) at 600 nm, and  $\Delta n$  was calculated by the equation  $\Delta n = \text{Re}/d$ , where d is thickness of the polymer film.

## Materials

Monomers (*endo*-NBL<sup>1</sup> and *exo*-NBL<sup>1</sup>, *endo*-MNBL<sup>2</sup>) were synthesized according to the previous report with slightly modified procedure. Dicyclopentadiene (Aldrich), maleic anhydride (Kanto Chemical, >99%), citraconic anhydride (Tokyo Chemical Industry, >98%), sodium borohydride (Kishida Chemical, >97%), 2-norbornene (Tokyo Chemical Industry, >99%), *endo-anti*-tetracyclo[6.2.1.1<sup>3,6</sup>.0<sup>2,7</sup>]dodec-4-ene (Tokyo Chemical Industry, >96%), ethyl vinyl ether (Tokyo Chemical Industry, 98%), Grubbs Catalyst<sup>®</sup> 1<sup>st</sup> Generation (G1) (Aldrich, 97%), Grubbs Catalyst<sup>®</sup> 2<sup>nd</sup> Generation (G2) (Aldrich), Grubbs Catalyst<sup>®</sup> 3<sup>rd</sup> Generation (G3) (Aldrich), RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> (Aldrich), *p*-toluenesulfonyl hydrazide (TSH, Tokyo Chemical Industry, >98%) were used as received. Dry solvents such as THF, CH<sub>2</sub>Cl<sub>2</sub>, and DMF (Kanto chemical) were used as received. 1,1,2,2-Tetrachloroethane (Kishida Chemical, 97%) was distilled from P<sub>2</sub>O<sub>5</sub> and stored over Molecular Sieves 4Å. *o*-Xylene and DMAc were distilled from CaH<sub>2</sub> and stored over Molecular Sieves 4Å.

## General

All reactions and polymerizations were carried out under nitrogen atmosphere using standard Schlenk techniques or a grove box.

## **Monomer Synthesis**

Synthesis of endo-2-methyl-5-norbornene-2,3-dicarboxylic anhydride<sup>2</sup>



Freshly distilled cyclopentadiene (4.90 g, 74.2 mmol) was added to a solution of citraconic anhydride (7.95 g, 72.2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL) at 0 °C. The reaction mixture was stirred for 20 h at room temperature under dark conditions. The volatiles were evaporated under vacuum, and the recrystallization from methanol gave *endo*-2-methyl-5-norbornene-2,3-dicarboxylic anhydride as a white solid in 85% yield (10.9 g, 61.2 mmol). For <sup>1</sup>H and <sup>13</sup>C NMR data, see reference 2. *Synthesis of 2-methyl-4-oxa-endo-tricyclo*[5.2.1.0<sup>2,6</sup>]*dec-8-en-3-one (endo-MNBL)*<sup>2</sup>



A solution of *endo*-2-methyl-5-norbornene-2,3-dicarboxylic anhydride (13.3 g, 74.6 mmol) in a mixed solvent of THF (40 mL) and methanol (3 mL) was added dropwise to a suspended solution of NaBH<sub>4</sub> (2.8 g, 75 mmol) in THF (54 mL) at 0 °C. After stirring for 1 h at room temperature, the reaction mixture was neutralized by the addition of HCl aq (2.0 M) at 0 °C. The volatiles were evaporated under vacuum, and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub>, washed with water and brine, and dried over anhydrous MgSO<sub>4</sub>. After sublimation and recrystallization from methanol, *endo*-MNBL was obtained as a white solid in 39% yield (4.79 g, 29.2 mmol). For <sup>1</sup>H and <sup>13</sup>C NMR data, see reference 2. *Synthesis of endo/exo-2-methyl-5-norbornene-2,3-dicarboxylic anhydride* 



Dicyclopentadiene (2.96 g, 22.4 mmol), citraconic anhydride (5.24 g, 46.8 mmol) and a trace amount of 3,5-di-*tert*-butyl-4-hydroxytoluene (BHT) were dissolved in *o*-dichlorobenzene (5.0 mL). The solution was stirred under microwave irradiation at 180 °C for 3 h. After the volatiles were evaporated under vacuum and subsequent sublimation, the mixture of *endo/exo*-2-methyl-5-norbornene-2,3dicarboxylic anhydride (3.74 g, 21.0 mmol) was obtained as a white solid in 47% yield (*endo/exo*, 45:55). The ratio of *endo/exo* was calculated by the <sup>1</sup>H NMR integral ratio of methyl groups (1.62 ppm for *endo-MNBL*, 1.32 ppm for *exo-MNBL*).

Synthesis of 2-methyl-4-oxa-endo/exo-tricyclo[5.2.1.0<sup>2,6</sup>]dec-8-en-3-one (endo/exo-MNBL)



A solution of the mixture *endo/exo*-2-methyl-5-norbornene-2,3-dicarboxylic anhydride (*endo/exo*, 45:55) (5.47 g, 30.7 mmol) in THF (16 mL) and methanol (1.2 mL) was added dropwise to a suspended solution of NaBH<sub>4</sub> (1.1 g, 31 mmol) in THF (22 mL) at 0 °C. After stirring for 1 h at room temperature, the reaction mixture was neutralized by the addition of HCl aq (2.0 M) at 0 °C. The volatiles were evaporated under vacuum, and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub>, washed with water and brine, and dried over anhydrous MgSO<sub>4</sub>. The Kugelrohr distillation gave *endo/exo*-MNBL (2.44 g, 14.9 mmol) as a white solid in 49% yield (*endo/exo*, 30:70). <sup>1</sup>H NMR for *exo*-MNBL (CDCl<sub>3</sub>, 400 MHz):  $\delta$  6.29–6.25 (m, 2H), 4.48 (dd, *J* = 9.7, 8.8 Hz, 1H), 4.00 (dd, *J* = 9.7, 3.0 Hz, 1H), 2.95–2.91 (m, 1H), 2.90–2.86 (m, 1H), 2.00 (m, 1H), 1.56–1.53 (m, 2H), 1.22 (s, 3H). <sup>13</sup>C NMR for *exo*-MNBL (CDCl<sub>3</sub>, 100 MHz):  $\delta$  181.8 (C=O), 137.6 (CH=), 136.0 (CH=), 70.7 (CH<sub>2</sub>), 53.4 (C<sub>q</sub>), 50.5 (CH), 49.7 (CH), 47.6 (CH), 45.4 (CH<sub>2</sub>), 21.3 (CH<sub>3</sub>).

### **Polymerizations**

#### *ROMP of endo-MNBL (entry 3, Table 1)*

A solution of *endo*-MNBL (84 mg, 0.51 mmol) in  $CH_2Cl_2$  (1.0 mL) was added to a solution of G3 (4.4 mg, 5.0 µmol) in  $CH_2Cl_2$  (1.0 mL) at room temperature. After stirring for 1 h at room temperature, a few drops of ethyl vinyl ether were added to terminate the polymerization. The mixture was stirred for additional 30 min. The solvent was then evaporated under vacuum. A small aliquot was sampled and subjected to <sup>1</sup>H NMR measurement to estimate the monomer conversion. The mixture was dissolved in a small quantity of  $CH_2Cl_2$  and reprecipitated into methanol. The product was dried under vacuum at 100 °C for 3 h to give 74 mg of poly(*endo*-MNBL) as a white solid in 89% yield.

## ROMCP of endo-MNBL and NB (entry 8, Table 2)

The *endo*-MNBL (84 mg, 0.47 mmol) in  $CH_2Cl_2$  (1.0 mL) was added to the solution of G3 (8.8 mg, 10 µmol) in  $CH_2Cl_2$  (2.0 mL). At the same time, a solution of NB (47 mg, 0.49 mmol) in  $CH_2Cl_2$  (1.0 mL) was added dropwise to the polymerization mixture over 5 min using a micro-syringe pump. After stirring for 1 h at room temperature, a few dops of ethyl vinyl ether were added, and the mixture was stirred for additional 30 min. Then, the solvent was partially evaporated, and the solution was reprecipitated into methanol. The product was dried under vacuum at 100 °C for 3 h to give 99 mg of poly(*endo*-MNBL-*ran*-NB) as a white solid in 76% yield.

#### Chain extension polymerization of endo-MNBL

The ROMP was carried out by the addition of a solution of *endo*-MNBL (81 mg, 0.45 mmol) in  $CH_2Cl_2$  (1.0 mL) at 0 °C to the solution of G3 (4.4 mg) in  $CH_2Cl_2$  (1.0 mL). The mixture was stirred at 0 °C for 2 h. A small aliquot was sampled from the mixture and quenched with a few drops of ethyl vinyl ether at 0 °C. The quantitative conversion of the monomer was confirmed by <sup>1</sup>H NMR. A solution of *endo*-MNBL (80 mg, 0.45 mmol) in  $CH_2Cl_2$  (1.0 mL) at 0 °C was added to the polymerization mixture. After stirring at 0 °C for 3 h, a few drops of ethyl vinyl ether were added, and the mixture was stirred for

additional 30 min. The solvent was evaporated under vacuum, and the conversion was estimated by  ${}^{1}$ H NMR. The mixture was dissolved in a small quantity of CH<sub>2</sub>Cl<sub>2</sub> and reprecipitated into methanol. The product was dried under vacuum at 100 °C for 3 h and subjected to the SEC measurement.

Kinetic study on the ROMCP of endo-MNBL and exo-MNBL

A solution of a mixture of *endo*-MNBL and *exo*-MNBL (1/1) (83 mg, 0.47 mmol), and 1,1,2,2tetrachloroethane (63 mg, 0.38 mmol) as an internal standard in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) was added to G3 (4.4 mg, 5.0  $\mu$ mol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) at -20 °C. During the ROMCP, aliquots were sampled at different time points and immediately quenched by a few drops of ethyl vinyl ether at -20 °C. The conversions were determined by the GC analysis.

## Hydrogenation

## Hydrogenation of poly(endo-MNBL) with H<sub>2</sub>/RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub>

Poly(*endo*-MNBL) (50 mg) was dispersed in a mixed solvent of *N*,*N*-dimethylacetamide (DMAc) (1.0 mL) and *o*-xylene (2.0 mL) in a glass reaction tube. RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> (3 mg, 3 µmol) was added to the glass reaction tube. The reaction tube was transferred to a stainless-steel autoclave reactor, and nitrogen substitution was performed. Hydrogenation was carried out under the hydrogen pressure of 0.75 MPa at 135 °C for 6 h. After the reaction, the mixture was precipitated into methanol. The product was dried under vacuum at 100 °C for 3 h to give 47 mg of H-poly(*endo*-MNBL) in 93% yield. The conversions were determined by <sup>1</sup>H NMR.

## Hydrogenation of poly(endo-MNBL) with TSH

Poly(*endo*-MNBL) (98 mg) and TSH (1.1 g, 5.9 mmol, 10 equivalent relative to the double bond) was dispersed in a solvent of *N*,*N*-dimethylformamide (DMF) (1.5 mL). After stirring for 5 h at 135 °C, the reaction mixture was precipitated into methanol. The product was dried under vacuum at

100 °C for 3 h to give 94 mg of H-poly(*endo*-MNBL) as a white solid in 95% yield. The conversions were determined by  $^{1}$ H NMR.

| Table S1. H | <b>Ivdrogenation</b> | of poly( <i>endo</i> -N | INBL) and p | olv( <i>endo</i> -MNBL | -co-exo-MNBL). |
|-------------|----------------------|-------------------------|-------------|------------------------|----------------|
|             | -,                   |                         |             |                        |                |

| entry | poly(MNBL) <sup>a</sup><br>endo /exo | cat. or reagent <sup>b</sup>                              | solvent <sup>c</sup><br>(v/v) | temp.<br>°C | time<br>h | conv. <sup>d</sup><br>% | 10 <sup>-3</sup> <i>M</i> <sup>e</sup> <sub>n</sub> | $M_{\rm w}/M_{\rm n}^{\rm e}$ | T g <sup>f</sup><br>℃ |
|-------|--------------------------------------|-----------------------------------------------------------|-------------------------------|-------------|-----------|-------------------------|-----------------------------------------------------|-------------------------------|-----------------------|
| 1     | 100/0                                | H <sub>2</sub> /RuHCI(CO)(PPh <sub>3</sub> ) <sub>3</sub> | o -xylene                     | 135         | 6         | 60                      | 26                                                  | 1.09                          | -                     |
| 2     | 100/0                                | H <sub>2</sub> /RuHCI(CO)(PPh <sub>3</sub> ) <sub>3</sub> | o -xylene                     | 165         | 6         | 57                      | 25                                                  | 1.11                          | -                     |
| 3     | 100/0                                | H <sub>2</sub> /RuHCI(CO)(PPh <sub>3</sub> ) <sub>3</sub> | o-xylene/DMAc (2/1)           | 135         | 6         | 81                      | 25                                                  | 1.11                          | -                     |
| 4     | 100/0                                | H <sub>2</sub> /RuHCI(CO)(PPh <sub>3</sub> ) <sub>3</sub> | o-xylene/DMAc (2/1)           | 135         | 12        | 88                      | 25                                                  | 1.12                          | -                     |
| 5     | 100/0                                | TSH (10 eq.)                                              | DMF                           | 135         | 5         | 95                      | 24                                                  | 1.12                          | 192                   |
| 6     | 30/70                                | TSH (10+20 eq.)                                           | DMF                           | 150         | 5+5       | 92                      | 27                                                  | 1.13                          | 173                   |
| 7     | 50/50                                | TSH (10+20 eq.)                                           | DMF                           | 135         | 5+5       | 95                      | 27                                                  | 1.10                          | 173                   |
| 8     | 71/29                                | TSH (10+20 eq.)                                           | DMF                           | 150         | 5+5       | 95                      | 28                                                  | 1.10                          | 184                   |
| . 9   | poly( <i>endo</i> -NBL)              | TSH (10 eq.)                                              | DMF                           | 135         | 5         | >99                     | 27 <sup>g</sup>                                     | 1.53 <sup>g</sup>             | -                     |

<sup>a</sup>50 mg. <sup>b</sup> Ru cat.: 3 mg (entries 1-4). <sup>c</sup>2 mL (entries 1, 2; insoluble), 3 mL (entries 3, 4; soluble), 1.5 mL (entries 5-9). <sup>d</sup> by <sup>1</sup>H NMR (CDCl<sub>3</sub>). <sup>e</sup> by GPC (CHCl<sub>3</sub>, PSt std.). <sup>f</sup> by DSC. <sup>g</sup> by GPC (DMF, PMMA std.).

| Table S2. I | Hydrogenation | of poly( <i>endo</i> -NBI | L-co-TCD) and | poly( <i>exo</i> -NBL- | <i>-co-</i> TCD). |
|-------------|---------------|---------------------------|---------------|------------------------|-------------------|
|-------------|---------------|---------------------------|---------------|------------------------|-------------------|

| entry |                                           |                                                           | solver   | nt  | temp. | time | conv.c             | 10 <sup>-3</sup> 1 d                 | na ina d            | Tge |
|-------|-------------------------------------------|-----------------------------------------------------------|----------|-----|-------|------|--------------------|--------------------------------------|---------------------|-----|
|       | polymer" cat. or reagent"                 | type                                                      | mL       | °C  | h     | %    | 10 <i>IVI</i> n    | <i>w <sub>w</sub>/w</i> <sub>n</sub> | °C                  |     |
| 1     | poly( <i>endo</i> -NBL- <i>grad</i> -TCD) | H <sub>2</sub> /RuHCl(CO)(PPh <sub>3</sub> ) <sub>3</sub> | o-xylene | 2.0 | 135   | 6 h  | (>99) <sup>f</sup> | (22) <sup>f</sup>                    | (1.25) <sup>f</sup> | 168 |
| 2     | poly( <i>endo</i> -NBL- <i>ran-</i> TCD)  | $H_2/RuHCl(CO)(PPh_3)_3$                                  | o-xylene | 2.0 | 135   | 6 h  | (>99) <sup>f</sup> | (27) <sup>f</sup>                    | (1.59) <sup>f</sup> | 168 |
| 3     | poly( <i>endo</i> -NBL- <i>ran-</i> TCD)  | TSH (10 eq.)                                              | DMF      | 1.5 | 135   | 5 h  | (>99) <sup>f</sup> | (22) <sup>f</sup>                    | (1.63) <sup>f</sup> | -   |
| 4     | poly( <i>exo-</i> NBL- <i>ran-</i> TCD)   | $H_2/RuHCl(CO)(PPh_3)_3$                                  | o-xylene | 2.0 | 135   | 6 h  | 97                 | 54                                   | 1.09                | 142 |
| 5     | poly( <i>exo</i> -NBL- <i>ran</i> -TCD)   | TSH (10 eq.)                                              | DMF      | 1.5 | 135   | 5 h  | 97                 | 41                                   | 1.37                | -   |

<sup>a</sup> 50 mg. <sup>b</sup> 3 mg of RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub>. <sup>c</sup> by <sup>1</sup>H NMR (CDCl<sub>3</sub>). <sup>d</sup> by GPC (CHCl<sub>3</sub>, PSt std.). <sup>e</sup> by DSC. <sup>f</sup> soluble fraction.

| entry | polymer <sup>b</sup>                       | conv. <sup>c</sup><br>% | 10 <sup>-3</sup> <i>M</i> n <sup>d</sup> | $M_{\rm w}/M_{\rm n}^{d}$ | τ <sub>g</sub> °<br>°C |
|-------|--------------------------------------------|-------------------------|------------------------------------------|---------------------------|------------------------|
| 1     | poly( <i>endo-</i> MNBL- <i>grad-</i> NB)  | 98                      | 24                                       | 1.14                      | -                      |
| 2     | poly( <i>endo</i> -MNBL- <i>block</i> -NB) | 97                      | 20                                       | 1.34                      | т.р.                   |
| 3     | poly( <i>endo</i> -MNBL- <i>ran</i> -NB)   | 98                      | 23                                       | 1.26                      | 102                    |

Table S3. Hydrogenation of poly(endo-MNBL-co-NB)<sup>a</sup>

<sup>*a*</sup> with TSH (10 eq.) in DMF (1.5 mL) at 135 °C for 5 h. <sup>*b*</sup> 50 mg. <sup>*c*</sup> by <sup>1</sup>H NMR (CDCI<sub>3</sub>). <sup>*d*</sup> by GPC (CHCI<sub>3</sub>, PSt std.). <sup>*e*</sup> by DSC.



Figure S1. Time-conversion plots of the copolymerization of *endo*-MNBL and *exo*-MNBL by G3 in CH<sub>2</sub>Cl<sub>2</sub> at -20 °C (Kinetic plots of ln([M<sub>0</sub>]/[M]) versus time is shown in Figure 2).



Figure S2. SEC profiles of before and after the hydrogenation of (a) poly(*endo*-MNBL) (CHCl<sub>3</sub> as the eluent) and (b) poly(*endo*-NBL) (DMF as the eluent).



Figure S3. Raman spectra of before (black) and after (red) the hydrogenation of (a) poly(*endo*-NBL-*grad*-TCD) (entry 1, Table 2) and (b) poly(*endo*-NBL-*ran*-TCD) (entry 2, Table 2).



Figure S4. Tg values of poly(exo-NBL-co-TCD)s at various compositions of exo-NBL unit.



Figure S5. T<sub>g</sub> values of (a) poly(*endo*-MNBL-*ran*-NB)s and (b) H-poly(*endo*-MNBL-*ran*-NB)s at various compositions of *endo*-MNBL unit.



Figure S6. DSC curves and T<sub>g</sub> values of poly(endo-MNBL) and H-poly(endo-MNBL).



Figure S7. DSC curves and T<sub>g</sub> values of poly(*endo*-NBL-*grad*-TCD) (entry 1 in Table 2), poly(*endo*-NBL-*ran*-TCD) (entry 2 in Table 2) and poly(*exo*-NBL-*ran*-TCD) (entry 4 in Table 2).



Figure S8. DSC curves and *T*g values of H-poly(*endo*-NBL-*grad*-TCD) (entry 1 in Table S2), H-poly(*endo*-NBL-*ran*-TCD) (entry 2 in Table S2), and H-poly(*exo*-NBL-*ran*-TCD) (entry 4 in Table S2).



Figure S9. DSC curves and *T*g values of poly(*endo*-MNBL-*co*-NB)s compared with the corresponding homopolymers.



Figure S10. DSC curves and Tg values of poly(endo-MNBL-ran-NB)s with various compositions.



Figure S11. DSC curves and *T*<sub>g</sub> values of H-poly(*endo*-MNBL-*co*-NB)s compared with the corresponding homopolymers.



Figure S12. DSC curves and T<sub>g</sub> values of H-poly(*endo*-MNBL-*ran*-NB)s with various compositions.



Figure S13. TGA curves of poly(endo-MNBL) and H-poly(endo-MNBL)



Figure S14. TGA curves of poly(*exo*-NBL-*ran*-TCD) and H-poly(*exo*-NBL-*ran*-TCD) (NBL/TCD = 53/47)



Figure S15. TGA curves of poly(*endo*-MNBL-*ran*-NB) and H-poly(*endo*-MNBL-*ran*-NB) (*endo*-MNBL /NB = 52/48)



Figure S16. XRD patterns of H-poly(NBL)s and ARTON.



Figure S17. XRD patterns of poly(NBL-co-TCD)s.



Figure S18. XRD patterns of H-poly(NBL-co-TCD)s compared with H-poly(TCD).



Figure S19. XRD patterns of H-poly(*endo*-MNBL) and H-poly(MNBL-*co*-NB)s with heat hysteresis (annealed at 200 °C for 30 min).



Composition of endo-MNBL in H-poly(MNBL-ran-NB)s

Figure S20. Water contact angle (°) at various compositions of *endo*-MNBL in H-poly(MNBL-*ran*-NB)s.



Figure S21. Pictures of water contact angle measurement.



Figure S22. <sup>1</sup>H NMR spectrum of *endo*-MNBL.



Figure S23. <sup>13</sup>C NMR spectrum of *endo*-MNBL.



Figure S24. <sup>1</sup>H NMR spectrum of a mixture of *exo*-MNBL and *endo*-MNBL.



Figure S25. <sup>13</sup>C NMR spectrum of a mixture of *exo*-MNBL and *endo*-MNBL.







Figure S27. <sup>13</sup>C NMR spectrum of poly(*endo*-MNBL).



Figure S28. <sup>1</sup>H NMR spectrum of poly(*endo*-MNBL-*co-exo*-MNBL).



Figure S29. <sup>1</sup>H NMR spectrum of poly(*endo*-NBL-*grad*-TCD).



Figure S30. <sup>1</sup>H NMR spectrum of poly(*exo*-NBL-*ran*-TCD).



Figure S31. <sup>1</sup>H NMR spectrum of poly(*endo*-MNBL-*ran*-NB).



Figure S33. <sup>13</sup>C NMR spectrum of H-poly(*endo*-MNBL).



Figure S34. <sup>1</sup>H NMR spectrum of H-poly(*endo*-MNBL-*co-exo*-MNBL).



Figure S35. <sup>1</sup>H NMR spectrum of H-poly(*exo*-NBL-grad-TCD).



Figure S36. <sup>1</sup>H NMR spectrum of H-poly(*endo*-MNBL-*ran*-NB).

# Reference

- 1) Miyasako, N.; Matsuoka, S.; Suzuki, M., Macromol. Rapid Commun. 2021, 42, 2000326.
- Citron, C. A.; Wickel, S. M.; Schulz, B.; Draeger, S.; Dickschat, J. S. Eur. J. Org. Chem. 2012, 6636–6646.