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Fabrication of Electrochromic Devices (ECDs)

The polyamide film was drop-coated on ITO glass (25 mm % 30 mm) and then overlapped by another
clean ITO glass of the same size as the cathode, which was adhered by the full-auto dispenser with a
20 mm by 20 mm thermosetting area with a 1 cm width break. The gap between the two ITO glasses
was confined to 120 um and the device was baked at 125 °C for 6 hours. Then, the electrolyte solution
was injected into the devices through a 1 cm width break in the vacuum encapsulation method. In the
end, the break was sealed by UV-curing adhesive. The electrolyte solution was made of 165 mg (0.1

M) of TBABF,4, 40 mg (15 uM) of HV, and 5 mL of propylene carbonate (PC).

Measurements

Inherent viscosities of the polymers were measured by glass capillary viscometers in Tamson TV2000
viscometer bath with a concentration of 0.5 g/dL. DMAc at 30 °C. Molecular weights are measured by
gel permeation chromatographic (GPC) analysis on a Waters chromatography unit interfaced with a
Waters 2410 refractive index detector. Two Shodex GPC KD-803 and GPC KD-804 were connected
in series with NMP and LiCl salt (20 mM) as the eluent at a flow rate of 0.35 mL/min at 40 °C and
were calibrated with polystyrene standards. Fourier transform infrared (FT-IR) spectra were acquired
with a PerkinElmer Spectrum. The '"H NMR and '*C NMR spectra were run on a Bruker AVIII HD-
600 (600 MHz), using dimethyl sulfoxide (DMSO-ds) as solvent and tetramethylsilane (TMS; 6 = 0
ppm) as the internal standard. Transparency of the polymer films was measured by Jasco V-650 UV-
vis spectrophotometer. High-resolution electrospray ionization mass spectrometry was carried out
using Orbitrap QE Plus mass spectrometer (Thermo Scientific, San Jose, USA). Thermogravimetric
analysis (TGA, TA instrument Q50) was used to analyze thermal stability and offered the
decomposition temperature (Tg) at which a 5% or 10% weight loss and chard yield at a heating rate of
20 °C /min under nitrogen or air system (flowing rate: 20 cm?/min). Differential scanning calorimeter
(DSC, TA Instruments Q-20) was used to analyse the melting point and the glass-transition
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temperature (T,) at a heating rate of 10 °C /min under a nitrogen atmosphere (flowing rate: 50
cm’/min). Electrochemical properties, including cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS), were conducted through CH Instruments 6122E Electrochemical
Analyzer under a three-electrode system consisting of a platinum counter electrode, a 0.6 cm by 3 cm
polymer film coated on ITO glass as working electrode, and an Ag/AgCl reference electrode in 3 mL
acetonitrile with 0.1 M TBABF, as supporting electrolyte, which the scanning rate of CV was 50 mV/s
and the testing frequency of EIS was from 1MHz to 0.1Hz. The Agilent UV-vis spectrophotometer

carried out the spectroelectrochemical experiments.
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Fig. S4. (a) 3C-NMR and (b) 'H-13C COSY spectra of TPA-OBz in DMSO-d.
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Table S1. Inherent viscosities and molecular weights of TPA-PA, E-Cz-PA, and co-OH-PA.

Polymers Ninn (dL/g) @ M, (kDa)® M, (kDa)? PDI ¢
TPA-PA 0.91 171.3 105.7 1.62
E-Cz-PA 0.33 47.5 25.7 1.85
co-OH-PA 0.31 15.7 10.5 1.50

@ Measured at a concentration of 0.5 g/dL. in DMAc at 30 °C.

bCalibrated with polystyrene standards, using NMP as the eluent at a constant flow rate of 0.35 mL/min
at 40 °C.

¢ Polydispersity index = My/M,,.

Table S2. Solubility behaviour of TPA-PA, E-Cz-PA, and co-OH-PA. ¢

Polymers DMSO NMP DMAc DMF THF CHCl;

TPA-PA ++ ++ ++ ++ - _

E-Cz-PA ++ ++ ++ ++ - _
co-OH-PA ++ ++ ++ ++ — _

@ Measured at a concentration of 5 mg sample in 1 mL solvent.

++: well dissolved at room temperature; —: totally not dissolved.
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Table S3. Thermal properties of TPA-PA, E-Cz-PA, and co-OH-PA.

Tq3(°C)? T4'0 (°C) ¢ Char
Polymer T, (°C) “
: d
N2 Air Nz Air Yield (%)
TPA-PA 184 375 345 390 390 25
E-Cz-PA 215 290 285 365 335 43
co-OH-PA 140 330 320 385 378 33

Ty, glass transition temperature, was measured by DSC with a heating rate of 20 °C/min.

b Temperature at weight loss of 5% polymer recorded by TGA at a heating rate of 20 °C /min and a
gas flow rate of 20 cm3/min.

¢ Temperature at weight loss of 10% polymer recorded by TGA at a heating rate of 20 °C /min and a
gas flow rate of 20 cm3/min.

4 Residual weight percentage at 800 °C in nitrogen.
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Table S4. Parameters of coloration efficiency for all prepared polyamides.

Polyamides A0D @ Q. (mC/cm?)? n (cm?/C)¢
TPA-PA 1.11 11.20 99.1
co-OH-PA 1.13 13.78 82.0
co-Zr10-PA 1.19 9.88 120.4
co-Zr20-PA 1.10 8.38 131.3
c0-Zr30-PA 1.01 6.83 147.8

an Optical density is defined as 40D=log [T,/T.], where the Ty, and T, are the transmittances of
bleaching and colouring states.
b The amount of ejected charge.

¢ Coloration efficiency, which is defined as #=A40D/Q.
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Table S5. Redox peak potentials of ECD-TPA-PA and ECD-co-Zr20PA.

Polyamides En (V) E..q(V)? AE (V)¢
ECD-TPA-PA 1.30 1.01 0.29
ECD-co-OH-PA 1.33 0.98 0.35
ECD-co-Zr20-PA 1.21 1.02 0.19

@ Oxidation potential at the peak.

b Reduction potential at the peak.

¢ Potential difference between oxidation and reduction peaks, |Eqx — Eeql-
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Table S6. Optical data of ECD-co-Zr20-PA for 100 cycles.

Cycles AT« 04T (%) ?
1 69.6 0.0
20 69.2 0.6
40 69.1 0.7
60 68.4 1.7
80 67.7 2.7
100 67.1 3.6

@ Transmittance change at 760 nm.

b Decay of transmittance change compared with the first cycle = (AT - ATy)/AT x 100%.
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