Supplementary Information

For

Nickel-Catalysed Cycloaddition Oligomerization of 1,6-Diynes to Medium-Size Cyclic Polyenes

Yuhsaku Okabe, Takeshi Yamada and Sentaro Okamoto*

Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama
221-8686, Japan

S-1. Solvent effects

					$\xrightarrow[\substack{\text { Solvent }(0.1 \mathrm{M}) \\ 60^{\circ} \mathrm{C} / 48(\mathrm{~h})}]{\begin{array}{c} \mathrm{Ni} \text { cat. }(3 \mathrm{~mol} \%) \\ \mathrm{Zn}(5 \mathrm{~mol}) \end{array}} \text { Polymer }$						
entry	Solvent	yield	$\begin{gathered} \text { Polym } \\ M_{\mathrm{n}} \end{gathered}$	$\mathrm{r}^{\text {a }}$	PDI	entry	Solvent	yield	Poly M_{n}	${ }^{\text {er }}{ }^{\text {a }}$	PDI
1	THF	70\%.	1908	2339	1.23	4	DMA	49\%	1735	2016	1.16
2	DMSO	38\%	1837	2144	1.17	5	NMP	59\%	1852	2230	1.20
3	Dioxane	64\%	1616	1915	1.18	6	t-BuOH		No reac		

S-2. Results for the reaction of deuterated diyne $\mathbf{d}_{\mathbf{2}} \mathbf{- 1 a}$

GPC profile

S-3 GPC profiles of crude polymers prepared by the reaction catalyzed by complex A

SI page - 3 -

S-4 GPC profiles of crude polymers derived from diyne 1a with various catalysts

Experimental Procedures

General. NMR spectra were recorded in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ at 600,500 , and 400 MHz for ${ }^{1} \mathrm{H}$ and 150,125 , and 100 MHz for ${ }^{13} \mathrm{C}$ on JEOL JNM-ECA600, -ECA500, and -ECZ400 spectrometers, respectively. Chemical shifts are reported in parts per million (ppm, δ) relative to trimethylsilane $\left(\mathrm{Me}_{4} \mathrm{Si}, \delta 0.00\right)$ or residual $\mathrm{CHCl}_{3}\left(\delta 7.26\right.$ for ${ }^{1} \mathrm{H}$ NMR), and CDCl_{3} ($\delta 77.0$ for ${ }^{13} \mathrm{C}$ NMR). MALDI-TOF mass spectra were recorded using a Shimadzu Biotech Axima CFRplus with curved field reflection (CFR) in reflection ion mode with a laser ($\lambda=337 \mathrm{~nm}$). IR spectra were recorded on a JASCO IR FT/IR 4100 spectrometer. UV-vis absorption spectra were recorded using Shimazdu UV-2450 spectrometers. Thermogravimetry/differential thermal analysis (TG/DTA) was carried out using Seiko Instruments Inc. EXSTAR6000 TG/DTA6200 under nitrogen (heating rate: $10^{\circ} \mathrm{C} / \mathrm{min}$). High-resolution mass spectroscopy (HR-MS) was performed on a JEOL Accu TOF T-100 instrument equipped with electrospray ionization (ESI) unit. The molecular weights ($M_{\mathrm{n}}, M_{\mathrm{w}}$) and polydispersities $\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)$ of the polymers were determined with a TOSOH HLC-8020 gel permeation chromatograph (GPC) unit [eluent: THF; calibration: polystyrene standards] using two TSK-gel columns (2 \times Multipore $\left.\mathrm{H}_{\mathrm{XL}}-\mathrm{M}\right)$. All reactions sensitive to oxygen and/or moisture were performed under an argon atmosphere. Dry solvents [THF, N, N-dimethylformamide (DMF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, toluene, N-methyl-2-pyrrolidone (NMP), and diethyl ether (ether)] were purchased from Kanto Chemicals. (Dipimp) $\mathrm{NiCl}_{2},{ }^{1}$ complexes $\mathbf{A},{ }^{2} \mathbf{B},{ }^{2} \mathbf{C},{ }^{3} \mathbf{D},{ }^{4}$ and (phen) $\mathrm{NiCl}_{2}{ }^{5}$ were prepared by the reported procedures. Diynes $\mathbf{1 a},{ }^{6} \mathbf{1 b},{ }^{7} \mathbf{1 c},{ }^{8} \mathbf{1 d},{ }^{9} \mathbf{1 e},{ }^{10} \mathbf{1 f},{ }^{6}$ and $\mathbf{1 a - d} \mathbf{d}_{\mathbf{2}}{ }^{11}$ were prepared according to the literature.

4-(((tert-Butyldimethylsilyl)oxy)methyl)-N,N-di(prop-2-yn-1-yl)benzenesulfonamide (1a'). To a mixture of 4-(hydroxymethyl)- N, N-di(prop-2-yn-1-yl)benzenesulfonamide ${ }^{12}(0.810 \mathrm{~g}, 3.08 \mathrm{mmol})$ and imidazole ($0.462 \mathrm{~g}, 6.78$ mmol $)$ in DMF $(15 \mathrm{~mL})$ was added $t-\mathrm{BuMe}_{2} \mathrm{SiCl} \quad(0.556 \mathrm{~g}, 3.70 \mathrm{mmol})$ and the mixture was stirred for 12 h at room temperature. After the addition of water, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by recrystallization in hexane to provide $\mathbf{1 a}{ }^{\prime}(1.09 \mathrm{~g})$ in 94% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.35(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.07\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.03(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 0.84(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu})$, $-0.01\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.3,136.4,127.9,126.1,76.1,64.2,36.2,25.9,18.4,-5.3$; IR (ATR) 3279, 2953, 2927, 2884, 2857, 2120, 1600, 1471, 1409, 1361, 1342, 1322, 1254, 1210, 1154, 1124, 1091, 1017, 955, 890, 834, $775 \mathrm{~cm}^{-1}$. HR-MS (ESI^{+}) for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SSiNa}$: Calcd. 400.1373, Found 400.1392.

General procedure for nickel-catalyzed cycloaddition cyclooligomerization of 1,6-diyne. Under argon atmosphere, to a stirred mixture of Zn powder $(3.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ and diyne $\mathbf{1}(1.0 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ was added a solution of complex A ($6.0 \mathrm{mg}, 0.01 \mathrm{mmol}$) in THF $(6 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$. After stirring for 48 h at this temperature, the mixture was allowed to cool to ambient temperature and 4 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added. The resulting mixture was passed through a pad
of Celite and the filtrate was concentrated under reduced pressure. The residue was chromatographed on silica gel to obtain cyclic polyene 2 .

Polymer 2a (317 mg) was obtained in 78% yield from $\mathbf{1 a}(247 \mathrm{mg}, 1.00 \mathrm{mmol})$.
Polymer 2b (108 mg) was obtained in 55% yield from $\mathbf{1 b}(197 \mathrm{mg}, 1.00 \mathrm{mmol})$.
Polymer 2c (105 mg) was obtained in 41% yield from $\mathbf{1 c}(255 \mathrm{mg}, 1.00 \mathrm{mmol})$.
Polymer 2d (143 mg) was obtained in 74% yield from $1 \mathbf{d}(193 \mathrm{mg}, 1.00 \mathrm{mmol})$.
Polymer $2 \mathbf{e}(71 \mathrm{mg})$ was obtained in 37% yield from $\mathbf{1 e}(191 \mathrm{mg}, 1.00 \mathrm{mmol})$.
Polymer $2 \mathbf{f}(175 \mathrm{mg})$ was obtained in 78% yield from $\mathbf{1 f}(292 \mathrm{mg}, 1.00 \mathrm{mmol})$.

Copolymerization of 1a and $\mathbf{1 a}^{\prime}$. Under argon atmosphere, to a stirred mixture of Zn powder $(9.8 \mathrm{mg}, 0.03 \mathrm{mmol})$ and diyne $\mathbf{1 a}(649 \mathrm{mg} 2.625 \mathrm{mmol})$ and $\mathbf{1 a}^{\prime}(93 \mathrm{mg}, 0.375 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ was added a solution of complex $\mathbf{A}(18.0$ $\mathrm{mg}, 0.03 \mathrm{mmol})$ in THF $(18 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$. After stirring for 48 h at this temperature, the mixture was allowed to cool to ambient temperature and 15 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added. The resulting mixture was passed through a pad of Celite and the filtrate was concentrated under reduced pressure. The corresponding COT 4a and benzene derivatives were removed from the crude residue by chromatography on silica gel to obtain a mixture of polyene $\mathbf{2}$ and $\mathbf{2 a} \mathbf{a}-\mathbf{O T B S}$ (total 412 mg) in $\sim 56 \%$ yield.

Desilylation of 2a'-OTBS and isolation of $\mathbf{2 a} \mathbf{\prime}-\mathbf{O H}$. To a solution of $\mathbf{2 a} \mathbf{'}^{\prime}$-OTBS (412 mg , approximately 1.67 mmol) in THF (5 mL) was added $n-\mathrm{Bu}_{4} \mathrm{NF}(3.3 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 3.3 mmol) at room temperature. After being stirred for 12 h , water was added. The mixture was extracted with $\mathrm{AcOEt}(15 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was chromatographed on silica gel (hexane/AcOEt) to give 2a (105 mg) and $\mathbf{2 a} \mathbf{\prime} \mathbf{- O H}$ $(126 \mathrm{mg})$ in 14% yield and $\sim 17 \%$ yield (based on 1a and 1a' (total 3.0 mmol), respectively.

Catalysts

Nickel complexes, (dipimp) NiCl_{2}, complex $\mathbf{A},{ }^{13}$ complex $\mathbf{B},{ }^{14,15}$ complex $\mathbf{C},{ }^{14,15}$ complex $\mathbf{D},{ }^{16}$ and (phen) $\mathrm{NiCl}_{2}{ }^{17}$ were prepared according to the reported procedure.

SI page - 6-

References

[1] Mogheiseh, M.; Zohuri, G. H.; Khoshsefat, M. J. Appl. Polym. Sci., 2019, 47376.
[2] Reed, B. R.; Stoian, S. A.; Lord, R. L.; Groysman, R. S. Chem. Commun., 2015, 51, 6496-6499.
[3] Wang, H.; Liu, C.-F.; Martin, R. T.; Gutierrez, O.; Koh, M. J. Nat. Chem., 2022, 14, 188-195.
[4] Khrizanforova, V. V.; Fayzullin, R. R.; Morozov, V. I.; Glimutdinov, I. F.; Lukoyanov, A. N.; Kataeva, O. N.; Gerasimova, T. P.; Katsyuba, S. A.; Fedushkin, I. L.; Lyssenko, K. A.; Budnikova, Y. H. Chem. Asian J., 2019, 14, 2979-2987.
[5] Nami, S. A. A.; Siddiqi, K. S. J. Chem. Res., 2006, 563-565.
[6] Gläsel, T.; Jiao, H.; Hapke, M. ACS Catal., 2021, 11, 13434-13444.
[7] Hashmi, A. S.; Molinari, L.; Rominger, F.; Oeser, T. Eur. J. Org. Chem., 2011, 2256-2264.
[8] Sarmiento-Sánchez, J. I.; Ochoa-Terán, A.; Rivero, I. A. Sci. World J., 2014, 264762/8, 8pp.
[9] Bonomi, P.; Attieh, M. D.; Gonzato, C.; Haupt, K. Chem. Eur. J., 2016, 22, 10150-10154.
[10] Kang, E.-H.; Kang, C.; Yang, S.; Oks, E.; Choi, T.-L. Macromolecules, 2016, 49, 6240-6250.
[11] Kanada, J.; Yamashita, K.; Nune, S. K.; Tanaka, M. Tetrahedron Lett., 2009, 50, 6196-6199.
[12] Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Brigitte Voit, A. S.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem. Int. Ed., 2004, 43, 3928-3932.
[13] Tsaulwayo, N.; Kumah, R. T.; Ojwach, J. Mol. Structure, 2021, 1232, 129987.
[14] Reed, B. R.; Stoian, S. A.; Lord, R. L.; Groysma, S. Chem. Commun., 2015, 51, 6496-6499.
[15] Reed, B. R.; Yousif, M.; Lord, R. L.; McKinnon, M.; Rochford, J.; Groysman, S. Organometallics, 2017, 36, 582593.
[16] De Souza, C. G.; de Souza, R. F.; Bernardo-Gusmáo, K. Appl. Catal. A: General, 2007, 325, 87-90.
[17] Khrizanforova, V. V.; Fayzullin, R. R.; Morozov, V. I.; Gilmutdinov, I. F.; Lukoyanov, A. N.; Kataeva, O. N.; Gerasimova, T. P.; Katsyuba, S. A.; Fedushkin, I. L.; Lyssenko, K. A.; Bundnikova, Y. H. Chem An Asian J., 2019, 14, 2979-2987.

Spectroscopic Data

NMR Spectra

Diyne monomer 1a

Diyne monomer 1a (1H NMR)

Diyne monomer 1a (13C NMR)

Diyne monomer 1a'

Diyne monomer 1a' (1H NMR)

Diyne monomer 1a' (13C NMR)

Diyne monomer 1a-d ${ }_{2}$

Diyne monomer 1a-d2 (1H NMR)

Diyne monomer 1b

Diyne monomer 1c

Diyne monomer 1c (1H NMR)

Diyne monomer 1d
Diyne monomer 1d (1H NMR)

Diyne monomer 1e

Diyne monomer 1e (1H NMR)

Diyne monomer 1f

Diyne monomer 1 f (1H NMR)

Polymer 2a

Polymer 2a (1H NMR)
l

Polymer 2a (13C NMR)

Polymer 2a-d ${ }_{2}$

Polymer 2a-d2 (1H NMR)

Polymer 2a-d2 (13C NMR)

Polymer 2a'-OH
Polymer 2a'-OH (isolated) (1H NMR)

Polymer $2 \mathrm{a}^{\prime}-\mathrm{OH}$ (isolated) (13C NMR)

Polymer 2a'-OTBS
Polymer 2a'-OTBS (a mixture of homopolymer and copolymers) (1H NMR)

Polymer 2a'-OTBS (a mixture of homopolymer and copolymers) (13C NMR)

Polymer 2b

Polymer 2b (1H NMR)
l

Polymer 2b (13C NMR)

Polymer 2c
Polymer 2c (1H NMR)

Polymer 2c (13C NMR)

```
DFILE 2c_13C.als
COMNT
DATIM 2021-02-26 20:24:03
OBNUC 13C
EXMOD single_pulse_dec
OBFRQ 150.92 MHz
OBSET 8.52 KHz
OBFIN 1.74 Hz
POINT 13107
SCANS }50
ACQTM 0.3460 sec
PD 2.0000 sec
PW1 4.17 usec
IRNUC 1H
IRNUC 1H
SLVNT CDCL3
SLVNT CDCL3 
EXREF 77.00 pp
RGAIN 50
```


Polymer 2d
Polymer 2d (1H NMR)

Polymer 2d (13C NMR)

Polymer 2e
Polymer $2 e$ (1 H NMR)

Polymer 2e (13C NMR)

Polymer 2f
Polymer 2f (1H NMR)

| | |
| :--- | :--- | :--- |

Polymer 2f (13C NMR)

Polymer 3a (after 30h heating of 2a)
Polymer 3a (after 30 h heating of 2 a) (1HNMR)

Polymer 3a (after 30 h heating of 2a) (13C NMR)

Polymer 3a' (after 3.5h heating of 2a)
Polymer 3a' (after 3.5 h heating of 2 a) (1H NMR)

Polymer 3a' (after 3.5 h heating of 2a) (13C NMR)

Cyclooctatetraene 4a

cyclooctatetraene 4a (1H NMR)

MALDI-TOF-MS Spectra

2a

1a
Data: YSK 128-3-Polymer0001.J15[c] 23 Nov 2020 16:37 Cal: tof 1 Oct 2020 12:55
Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode Reflectron, Power: 90, P.Ext. @ 2100 (bin 98)
\%Int. $\quad 12 \mathrm{mV}$ [sum $=2486 \mathrm{mV}$] Profiles 1-200 Unsmoothed

100
90
80
70
60
50
40
30
20
10
0

2a-d

Data: YSK268-Poly0001.A19[c] 22 Oct 2021 18:47 Cal: ohta-20210610_1K-3K 10 Jun 2021 16:10 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode Reflectron, Power: 110, P.Ext. @ 2500 (bin 107)

3a

Data: SHO-310001.N21[c] 18 Dec 2021 18:32 Cal: test 3 Sep 2019 16:59
Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode Linear, Power: 95, P.Ext. © 2500 (bin 74)
\%int. $\quad 11 \mathrm{mV}$ [sum= 1101 mV] Profiles 1 1-100 Unsmoothed

$2 a^{\prime}-O H$

Data: YSK238-1OH0001.B17[c] 30 Jul 2021 11:35 Cal: ohta-20210610_1K-3K 10 Jun 2021 16:10

2b

Data: YSK330-Poly0001.J22[c] 19 Mar 2022 20:52 Cal: test 3 Sep 2019 16:59 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode Linear, Power: 90, P.Ext. @ 2500 (bin 74)

2c

Data: YSK148-10001.A15[c] 10 Mar 2021 16:39 Cal: ohta-20210610_1K-3K 10 Jun 2021 16:10 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode Reflectron, Power: 100, P.Ext. @ 2500 (bin 107)

2d

onolab/ATSUGI
RY-II-38
Data: YSK326-20001.M22[c] 31 Jan 2022 15:10 Cal: test 3 Sep 2019 16:59
Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode Linear, Power: 110, P.Ext. @ 2500 (bin 74
\%Int. 39 mV [sum $=3905 \mathrm{mV}$] Profiles 1-100 Unsmoothed

2e

Data: YSK 292-Poly0001.H20[c] 25 Nov 2021 18:45 Cal: ohta-20210610 1K-3K 10 Jun 2021 16-10
Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode Reflectron, Power: 95, P.Ext. @ 2500 (bin 107)
\%Int 35 mV [sum $=3524 \mathrm{mV}$] Profiles 1-100 Unsmoothed

100
90
80
70
60
50
40
30
20
10
0

$2 f$

Data: YSK255-4-TFAAg-linear0001.J19[c] 5 Oct 2021 12:05 Cal: tof 24 Mar 2021 10:26 Shimadzu Biotech Axima Confidence 2.9.3.20110624: Mode Linear, Power: 90, P.Ext. @ 2500 (bin 74)

