Tailoring the Crystallization of Poly (L-lactide) via Structural Optimization of Hydrogen-Bonding Segments with Different Aliphatic Spacer Length

Manman Yu^a, Yunsheng Xu^b, Pengwu Xu^a, Youpei Du^c, Weijun Yang^a, Pingxia Zhang^c, Piming Ma^{a*}

^aThe Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.

^b Zhejiang Sci-Tech University, Sch Mat Sci & Engn, Hangzhou 310018, Peoples R China

°Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry,

Chinese Academy of Sciences, Beijing, 100049, China

*Corresponding Author: Piming Ma (p.ma@jiangnan.edu.cn)

Support information

Figure S1. ¹H-NMR spectrum of (a) OXA-2 (b) OXA-4 (c) PLLA ($M_n \sim 50.0 \text{ kg/mol}$) (d) PLLA_{OXA-2} ($M_n \sim 50.0 \text{ kg/mol}$) (e) PLLA_{OXA-4} ($M_n \sim 50.0 \text{ kg/mol}$) (f) PLLA ($M_n \sim 30.0 \text{ kg/mol}$) (g) PLLA_{OXA-2} ($M_n \sim 30.0 \text{ kg/mol}$) (h) PLLA_{OXA-4} ($M_n \sim 30.0 \text{ kg/mol}$) and (i) PLLA_{OXA-6} ($M_n \sim 30.0 \text{ kg/mol}$) in DMSO

Figure S2. (a) cooling and (b) subsequent heating DSC curves of PLLA and PLLA_{OXA-n} ($M_n \sim 30.0$ kg/mol)

Figure S3. The glass-transition temperature (T_g) of PLLA and PLLA_{OXA-n} ($M_n \sim 30.0$ kg/mol)

Table S1. The molecular weight and polydispersity index of PLLA and PLLA $_{OXA-n}$ obtained via GPC

Table S2. Non-isothermal crystallization parameter of PLLA and PLLA_{OXA-n} ($M_n \sim 30.0$ kg/mol)

Molecular structure of OXA-n and PLLA_{OXA-n}

The ¹H NMR spectrum of OXA-2 and OXA-4 are shown in Figure S1(a-b), and the specific data are as follows: ¹H NMR (400 MHz, DMSO) δ 8.52 (t, 2H), 4.72 (t, 2H), 3.46 (q, 4H), 3.22 (q, 4H) and ¹H NMR (400 MHz, DMSO) δ 8.70 (t, 2H), 4.39 (t, 2H), 3.38 (q, 4H), 3.13 (m, 4H), 1.45 (m, 8H). The specific data of the PLLA, PLLA_{OXA-2} and PLLA_{OXA-4} (5×10⁴ g/mol, Figure S1(c-e)) are as follows: ¹H NMR (400 MHz, DMSO) δ 4.28, 2.82, 1.43, ¹H NMR (400 MHz, DMSO) δ 8.86, 5.48, 5.22-5.14, 4.12, 3.38, 1.53-1.32 and ¹H NMR (400 MHz, DMSO) δ 8.76, 5.46, 5.20, 4.21-4.06, 3.14, 1.52-1.26. The ¹H NMR spectrum of the PLLA, PLLA_{OXA-2}, PLLA_{OXA-4} and PLLA_{OXA-6} ($M_n \sim$ 30.0 kg/mol) are shown in Figure S1(f-i) and the specific data are as follows: ¹H NMR (400 MHz, DMSO) δ 4.28, 2.82, 1.43, ¹H NMR (400 MHz, DMSO) δ 8.88, 5.47, 5.22-5.14, 4.232, 3.37, 1.53-1.28, ¹H NMR (400 MHz, DMSO) δ 8.63, 5.39, 5.15, 4.14-4.02, 3.10-3.00, 1.58-1.55, 1.53-1.40 1.30-1.08.

Figure S1. ¹H-NMR spectrum of (a) OXA-2 (b) OXA-4 (c) PLLA ($M_n \sim 50.0 \text{ kg/mol}$) (d) PLLA_{OXA-2} ($M_n \sim 50.0 \text{ kg/mol}$) (e) PLLA_{OXA-4} ($M_n \sim 50.0 \text{ kg/mol}$) (f) PLLA ($M_n \sim 30.0 \text{ kg/mol}$) (g) PLLA_{OXA-2} ($M_n \sim 30.0 \text{ kg/mol}$) (h) PLLA_{OXA-4} ($M_n \sim 30.0 \text{ kg/mol}$) and (i) PLLA_{OXA-6} ($M_n \sim 30.0 \text{ kg/mol}$) in DMSO

The molecular weight (M_n and M_w) and polydispersity index (PDI) of PLLA and PLLA_{OXA-n} ($M_n \sim 30.0$ kg/mol) were characterized by gel permeation chromatography (polystyrene standard), and the results are shown in Table S1.

Samples	$M_{n}^{(g\cdot mol^{-1})}$	\mathbf{M}_{w}^{-1}	Polydispersity index (PDI)
PLLA	32150	56380	1.75
PLLA _{OXA-2}	31280	59290	1.90
PLLA _{OXA-4}	39800	70640	1.77
PLLA _{OXA-6}	34240	40090	1.17

Table S1. The molecular weight and polydispersity index of PLLA and PLLA_{OXA-n} obtained via GPC

Note: M_n is the number average molecular weight and M_w is the weight average molecular weight.

Figure S2 show the cooling and subsequent heating DSC curves of PLLA and PLLA_{OXA-n} ($M_n \sim 30.0$ kg/mol). And the thermal parameters of the PLLA and PLLA_{OXA-n} calculated from the non-isothermal crystallization and the subsequent melting DSC curves are shown in Table S2.

Figure S2. (a) cooling and (b) subsequent heating DSC curves of PLLA and PLLA_{OXA-n} ($M_n \sim 30.0$ kg/mol) Table S2. Non-isothermal crystallization parameter of PLLA and PLLA_{OXA-n} ($M_n \sim 30.0$ kg/mol)

Samples	T _{cc}	$ riangle H_{cc}$	T _m	$ riangle H_m$	T _c	$ riangle H_c$	X _c
	(°C)	$(J \cdot g^{-1})$	$(\circ C)$	$(J \cdot g^{-1})$	(°C)	$(J \cdot g^{-1})$	(%)
PLLA	103.3	16.3	166.5	30.5	96.1	7.1	7.6
PLLA _{OXA-2}	97.5	19.5	166.4	33.1	98.5	14.2	15.3
PLLA _{OXA-4}	94.9	15.6	166.6	34.4	104.3	24.5	26.4
PLLA _{OXA-6}	95.8	7.9	166.6	30.4	104.9	36.4	38.8

Note: T_c is the crystallization temperature, ΔH_c is the crystallization enthalpy, T_{cc} is the cold crystallization temperature, ΔH_{cc} is the cold crystallization enthalpy, T_m is the melting temperature, ΔH_m is the melting enthalpy, X_c is the crystallinity, and X_c is calculated from the DSC data by $X_c = \Delta H_c / (\omega * \Delta H_m^0) \times 100$ %, where ΔH_m and ΔH_c are melting and crystallization enthalpies of PLLA, respectively, ω is the weight proportion of the PLLA in the PLLA_{OXA-n}, while the $\Delta H_m^0 = 93.6$ J/g is the melting enthalpy of PLLA with a crystallinity of 100%.

Figure S3. The glass-transition temperature (T_g) of PLLA and PLLA_{OXA-n} $(M_n \sim 30.0 \text{ kg/mol})$