Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Quasiliving carbocationic polymerization of isobutylene using FeCl3 as

an efficient and water-tolerant Lewis acid: synthesis of well-defined

telechelic polyisobutylenes

Mikalai Bohdan,^{a,b} Dmitriy I. Shiman,^{a, b} Pavel A. Nikishau,^a Irina V. Vasilenko^a and Sergei V.

Kostjuk*,a,b

^a Research Institute for Physical Chemical Problems of the Belarusian State University,

14 Leningradskaya st., 220030 Minsk, Belarus

^bDepartment of Chemistry, Belarusian State University, Leningradskaya st. 14, 220006, Minsk, Belarus

Contents

Experimental section Table S1. Effect of Catalyst Preparation on the Cationic Polymerization of IB with DiCumCl/FeCl₃×1.4ⁱPrOH Initiating System PS6

Table S2. Effect of Solvent on the Cationic Polymerization of Isobutylene with DiCumCl/FeCl₃×1.4ⁱPrOH Initiating System PS7

Table S3. Effect of Temperature on the Cationic Polymerization of Isobutylene with DiCumCl/FeCl₃×1.4ⁱPrOH Initiating System PS7

Table S4. Cationic Polymerization of Isobutylene with DiCumCl/FeCl₃×1.4ⁱPrOH Initiating System at Different Monomer to Initiator Ratios at -60 °C PS8

Figure S1. (a) First-order plots and (b) M_n , D vs. conversion plots for the cationic polymerization of isobutylene with DiCumCl/FeCl₃×1.4ⁱPrOH initiating system in CH_2Cl_2/n -hexane at -80 °C and at different co-initiator concentrations: [IB] = 1.2 M; [DiCumCl] = 9.0 mM.PS9

Figure S2. SEC traces of polyisobutylene (1) before and (2) after end-quenching by $^{i}Pr_{2}O$ (entries 1 and 3 in Table 2) PS9

Figure S3. Conversion vs. [H₂O]/[FeCl₃] dependence for the cationic polymerization of isobutylene with DiCumCl/FeCl₃×1.4ⁱPrOH initiating system in CH₂Cl₂/*n*-hexane at -80 °C: [IB] = 1.2 M; [DiCumCl] = 9.0 mM; $[FeCl_3 \times 1.4^{i}PrOH] = 14 \text{ mM}$. Reaction time: 2 min. **PS10**

Figure **S4**. SEC curves of polyisobutylenes synthesized with DiCumCl/LA $(LA = FeCl_3 \times 1.4^{i}PrOH \text{ or } TiCl_4)$ initiating system in CH_2Cl_2/n -hexane mixture 40:60 v/v at -80 °C at 10 mol% H₂O to Lewis acid and using different Lewis acids: [IB] = 1.2 M; [DiCumCl] = 9.0 mM; [LA] = 14 mM. Lewis acid: FeCl₃×1.4ⁱPrOH (1) (entry 2, Table 3); TiCl₄ in the presence of Lu (2) (entry 4, Table 3) and TiCl₄ (3) (entry 3, Table 3). **PS10**

Figure S5. SEC curves of polyisobutylenes synthesized with DiCumCl/TiCl₄ initiating system in CH_2Cl_2/n -hexane mixture 40:60 v/v at -80 °C at different concentration of H_2O : [IB] = 1.2 M; [DiCumCl] = 9.0 mM; [LA] = 14 mM. Concentration of H₂O: 10 mol% to TiCl₄ (1) (entry 3, Table 3); 25 mol% to $TiCl_4$ (2) (entry 7, Table 3); 65 mol% to $TiCl_4$ (3) (entry 9, Table 3). **PS11**

Figure S6. Relative energies ($\Delta_r H_{193}$) and formulas of the structures for the FeCl₃-complexes formation reactions. The numbers are $\Delta_r G_{193}$ of the formation reaction of FeCl₃×2ROR' complexes (in kJ/mol) **PS11**

Table S5. Cationic Polymerization of Isobutylene with DiCumCl/FeCl₃×1.4ROH (R = iPr or Bu) Initiating System at -80 °C PS12

Figure S7. Geometric representation of optimized structures at BP86/def2-SVP level of theory. HB = hydrogen bondPS12–PS14

PS3–PS4

Table (HB = 1	S6. 1vdro	Average 1 gen bond)	NBO	Charges	on	toms	in di	fferent	molecul	es and com	plexes PS15
Table CumCl/	S7. /FeCl	One-Step ₃ ×1.4 ⁱ PrOH	All Initiat	cylation ting Syste	of em	Phenol	by	Living	PIB	Synthesized	with PS16
Table DiCum	S8. Cl/Fe	One-Step Cl ₃ ×1.4 ⁱ PrC	All OH Init	cylation tiating Sy	of stem	Phenol	by	Living	PIB	Synthesized	with PS16
Refere	nces										PS18

EXPERIMENTAL SECTION

Synthesis of 2-Chloro-2-phenylpropan (cumyl chloride). Cumyl chloride was prepared via passing gaseous HCl through a solution of 5 g of α -methylstyrene (99%, Sigma–Aldrich) in 50 mL of CH₂Cl₂ at 0 °C under stirring. Then the CH₂Cl₂ was evaporated and the cumyl chloride was distilled in vacuum (0.7 Torr) at 35 °C. The purity of the prepared cumyl chloride was confirmed by ¹H NMR spectroscopy.

Synthesis of *exo*-olefin terminated polyisobutylene. The polymerization reaction was carried out in glass tubes under argon atmosphere at -80 °C. As an example of the typical procedure, polymerization was initiated by addition solution of FeCl₃×1.4 ⁱPrOH in CH₂Cl₂ (1.0 mL, 0.22 M) to a mixture of total volume 11 mL consisting of dicumyl chloride (0.025g, 0.108 mmol), isobutylene (0.813 g, 1.20 mL, 14.5 mmol), *n*-hexane (6.5 mL) and CH₂Cl₂ (3.3 mL). After 3 min, 0.122 mL ⁱPr₂O was added and reaction mixture was allowed to heated to the room temperature. After 30 min, the reaction was terminated by addition of 2 mL ethanol containing of 0.5%wt of NaOH. The quenched reaction mixture was diluted by *n*-hexane, centrifuged to remove the iron–containing residues, evaporated to dryness under reduced pressure, and dried in vacuum at 40 °C to give the product polymers.

Preparation of LA×PhOH. The complexes of LA (FeCl₃ or AlCl₃) with PhOH were prepared under argon atmosphere in CH₂Cl₂ at 0 °C. As an example of the typical procedure, 0.230 g of FeCl₃ or 0.189 g AlCl₃ (1.42·mmol) was air-tightly transferred into Schlenk flask, followed by addition of 9.1 mL of phenol solution in CH₂Cl₂ ([PhOH] = 2.55 M) under vigorous stirring. After 5 minutes, a transparent solution was obtained with [LA] = 0.155 M and [PhOH] = 2.55 M. **Synthesis of hydroxyl-terminated PIB (PIBOH).** The polymerization and *in situ* functionalization was carried out in glass tubes under argon atmosphere at -80 °C. As an example of the typical procedure, polymerization was initiated by addition of solution of FeCl₃×1.4 PrOH in CH₂Cl₂ (1.5 mL, 0.22 M) to a mixture of total volume 22.5 mL consisting of dicumyl chloride (50 mg, 0.216 mmol), isobutylene (1.63 g, 2.40 mL, 29.0 mmol), *n*-hexane (13 mL) and CH₂Cl₂ (7.1 mL). After 10 min, 6.8 mL of solution of LA×PhOH in CH₂Cl₂ was added and the reaction mixture was allowed to heated to room temperature. Samples of ca. 2 mL were taken at predetermined time intervals and precipitated into excess of ethanol. Then the resulting polymer was centrifuged, dissolved in hexane, and re-precipitated into ethanol. The functionalization of PIB was studied by ¹H NMR spectroscopy.

Computational Details. All calculations were performed with Gaussian 09 program¹ using the density functional theory (DFT) BP86² method. Optimizations were performed in conjunction with the def2-SVP³ basis set. Single-point energy, frequency, and Natural bond orbital (NBO) calculations were performed using the def2-TZVP³ basis set taking into account the highest multiplicity of iron-containing compounds⁴. The solvent effects in both steps were evaluated using the polarized continuum model (PCM)⁵ with the default parameters for chloroform ($\varepsilon = 4.7113$). Despite the fact that the reaction was carried out in a mixture of *n*-hexane ($\varepsilon = 1.8819$) and dichloromethane ($\varepsilon = 8.93$) with 60:40 v/v, chloroform was selected for calculations because its ε value is close to the average ε of the specified mixture of solvents (1.8819×0.6 + 8.93×0.4 = 4.7011). Optimized structures were checked to be minima, with no imaginary frequencies. The Gibbs free energy for reaction at 193 K (or -80 °C, $\Delta_r G_{193}$) was computed from the following equations:

$$\Delta_{\rm r}G_{193} = \Delta_{\rm r}H_{193} - T\Delta_{\rm r}S_{193}$$
$$\Delta_{\rm r}H_{193} = \Delta E_{\rm total} + \Delta ZPE + \Delta (H_{193} - H_0)$$

where E_{total} is SCF single point electronic energy, ZPE is the zero-point vibrational energy, (H_{193} – H_0) is the change in enthalpy due to changing the temperature from 0 to 193 K, and S is the entropy at 193 K. Typically, binding energy was calculated us $\Delta_r G_{193}$ for the reaction:

$$FeCl_3 + ROR' = FeCl_3 - OR(R')$$

where $R = {}^{i}Pr$, Bu; R' = H, ${}^{i}Pr$.

 Table S1. Effect of Catalyst Preparation on the Cationic Polymerization of IB with

 DiCumCl/FeCl₃×1.4ⁱPrOH Initiating System^a

entry	Complex preparation	time (min)	conv. (%)	$M_{n, theor}^{b}$ (g mol ⁻¹)	M _n (g mol ⁻¹)	Đ	end distribu olefin ^c	group tion (%) PIBC1	$F_n(\alpha)^d$
1	e	2	0	_	_	_	_	_	_
2	e	30	0	-	_	-	-	-	_
3 ^f	e	10	11	1120	800	2.1	67 ^g	0	100
4	Ι	1	30	2340	2200	1.2	19	81	99
5	II	1	86	6710	7900	1.2	31	69	96
6	Ι	5	100	7800	10000	1.3	31	69	97
7	II	5	100	7800	9850	1.3	45	55	86

^a Conditions: [IB] = 1.2 M; [DiCumCl] = 9mM; CH_2Cl_2/n -hexane 40: 60 (v/v); [FeCl₃×1.4iPrOH]=38 mM;. ^b M_{n, theor} = ([IB]/[DiCumCl]×56×Conv.+M_r(DiCumCl)). ^c Total olefinic end groups content including *exo-*, *endo*-olefin, *tri-*, *tetra*-substituted olefin end groups and coupled polymer chains determined by ¹H NMR spectroscopy (see Figure 1 for details). ^d Fraction of difunctional PIB calculated from ¹H NMR spectroscopy. ^e Neat FeCl₃ was used as co-initiator. ^f Polymerization was initiated by simultaneous addition of IB and DiCumCl solution in CH_2Cl_2 into the reactor containing FeCl₃, iPrOH and solvents (CH_2Cl_2/n -hexane). ^g Along with exo-olefin end group, the endo-olefin end group (33 mol%) was detected.

Catalytic complex preparation:

Complex I: FeCl₃×1.4ⁱPrOH was prepared in CH₂Cl₂ (0.22 M) at 0 °C and then heated to room temperature (20 °C – 25 °C) before use.

Complex 2: FeCl₃×1.4ⁱPrOH was prepared in CH₂Cl₂ (0.22 M) at 0 °C and then stored and used at 0 °C.

Table S2. Effect of Solvent on the Cationic Polymerization of Isobutylene with $DiCumCl/FeCl_3 \times 1.4^{i}PrOH$ Initiating System ^a

entry		time (min)	conv (%)	M _{n, theor} b (g mol ⁻¹)	M _n (g mol ⁻¹)		end group distribution (%)				_
	CH ₂ Cl ₂					Ð	exo	endo +tri+ tetra	coup	PIBC1	F _n (α) ^c
1	60/40	0.5	81	6300	7550	1.17	19	2	6	73	96
2	60/40	1.0	93	7250	8320	1.20	26	0	8	66	97
3	80/20	0.5	70	5450	5200	1.44	23	0	5	72	99
4	80/20	1.0	100	7800	7580	1.35	83	15	0	2	91
5	90/10	2.0	83	6500	6740	1.74	80	11	0	9	90
6	98/2	0.5	36	2800	7850	2.39	39	11	0	50	77
7	98/2	1.0	46	3600	7870	2.35	69	13	5	13	77

^a Conditions: [IB] = 1.2 M; [DiCumCl]= 9mM; [FeCl₃×1.4iPrOH]=38 mM; T: -80 °C; ^bM_{n, theor} = ([IB]/[DiCumCl]×56×Conv.+M_r(DiCumCl)). ^c Fraction of difunctional PIB calculated from ¹H NMR spectroscopy.

Table S3. Effect of Temperature on the Cationic Polymerization of Isobutylene withDiCumCl/FeCl $_3 \times 1.4^i$ PrOH Initiating System ^a

entry			conv. (%)	M _{n, theor} b (g mol ⁻¹)	м		end				
	l (°C)	time (min)			$(g \text{ mol}^{-1})$	Đ	exo	endo +tri+ tetra	coup	PIBC1	$F_n(\alpha)^c$
1	-80	1	78	6100	6580	1.14	2	1	0	97	100
2	-80	3	97	7600	8320	1.14	7	0	6	86	98
3	-60	1	64	5000	4740	1.20	19	0	2	79	98
4	-60	3	71	5550	5870	1.27	73	9	2	16	97
5	-60	5	97	7600	8510	1.38	89	2	6	3	88
6	-40	1	38	2950	2850	1.40	85	8	2	5	87
7	-40	3	86	6700	3100	1.96	92	2	2	3	42
8	-20	3	55	4300	1350	1.84	89	3	5	3	22

^a Conditions: [IB] = 1.2 M; [DiCumCl]=9mM; [FeCl₃×1.4iPrOH]=19 mM; CH₂Cl₂/*n*-hexane 40:60 v/v; ^bM_{n, theor} = ([IB]/[DiCumCl]×56×Conv.+M_r(DiCumCl)). ^c Fraction of diffunctional PIB calculated from ¹H NMR spectroscopy

entry	Ip	FeCl ₃ (mM)	time (min)	conv. (%)	M _{n, theor} c (g mol ⁻¹)	M _n	Đ	end group distribution (%)		$F_n(\alpha)^e$
	(mM)					(g mol ⁻¹)		olefin ^d	PIBC1	
1	4.5	9.5	15	58	8660	7560	1.23	14	86	97
2	4.5	9.5	30	87	12960	12370	1.27	56	45	94
3	9	19	5	97	7560	8510	1.38	97	3	88
4 ^e	9	19	5	0	-	-	-	-	-	-
5	9	19	3	71	5540	5870	1.27	84	16	97
6	18	38	2	100	3730	4760	1.42	99	1	83

Table S4. Cationic Polymerization of Isobutylene with DiCumCl/FeCl₃×1.4ⁱPrOH Initiating System at Different Monomer to Initiator Ratios at -60 °C ^a

^a Conditions: [IB] = 1.2 M; CH₂Cl₂/*n*-hexane 40:60 v/v. ^b I: DiCumCl. ^c $M_{n, \text{theor}} = ([IB]/[DiCumCl] \times 56 \times \text{Conv.+}M_r(DiCumCl))$. ^d Total olefinic end groups content including *exo-*, *endo*-olefin, *tri-*, *tetra*-substituted olefin end groups and coupled polymer chains determined by ¹H NMR spectroscopy (see Figure 1 for details). ^e Fraction of difunctional PIB calculated from ¹H NMR spectroscopy. ^e 1.4-Lutidine (Lu, 1.5 mM) was added to the reaction mixture.

Figure S1. (a) First-order plots and (b) M_n , \overline{D} vs. conversion plots for the cationic polymerization of isobutylene with DiCumCl/FeCl₃×1.4iPrOH initiating system in CH₂Cl₂/*n*-hexane at -80 °C and at different co-initiator concentrations: [IB] = 1.2 M; [DiCumCl]=9 mM.

Figure S2. SEC traces of polyisobutylene (a) before and (b) after end-quenching by ${}^{i}Pr_{2}O$ (entries 1 and 3 in Table 2).

Figure S3. Conversion vs $[H_2O]/[FeCl_3]$ dependence for the cationic polymerization of isobutylene with DiCumCl/FeCl_3×1.4iPrOH initiating system in CH₂Cl₂/*n*-hexane at -80 °C: [IB] = 1.2 M; [DiCumCl]=9 mM; [FeCl_3×1.4ⁱPrOH]=14 mM. Reaction time: 2 min.

Figure S4. SEC curves of polyisobutylenes synthesized with DiCumCl/LA (LA= $FeCl_3 \times 1.4^{i}PrOH$ or TiCl₄) initiating systems in CH_2Cl_2/n -hexane mixture 40:60 v/v at -80 °C at 10 mol% H₂O to Lewis acid: [IB] = 1.2 M; [DiCumCl]=9 mM; [LA]=14 mM. Lewis acid: $FeCl_3 \times 1.4^{i}PrOH$ (1) (entry 2, Table 3); TiCl₄ in the presence of Lu (2) (entry 4, Table 3) and TiCl₄ (3) (entry 3, Table 3).

Figure S5. SEC curves of polyisobutylenes synthesized with DiCumCl/TiCl₄ initiating system in CH_2Cl_2/n -hexane mixture 40:60 v/v at -80 °C at different concentration of H_2O : [IB] = 1.2 M; [DiCumCl]=9 mM; [LA]=14 mM. Concentration of H_2O : 10 mol% to TiCl₄ (1) (entry 3, Table 3); 25 mol% to TiCl₄ (entry 7, Table 3); 65 mol% to TiCl₄ (entry 9, Table 3).

Figure S6. Relative energies $(\Delta_r H_{193})$ and formulas of the structures for the FeCl₃-complexes formation reactions. The numbers are $\Delta_r G_{193}$ of the formation reaction of FeCl₃×2ROR' complexes (in kJ/mol).

Table S5. Cationic Polymerization of Isobutylene with DiCumCl/FeCl₃×1.4ROH (R=ⁱPr or Bu) Initiating System at -80 °C ^a

entry		E ₂ C1	00 0 1	М		end				
	ROH	(mM)	(%)	(g mol ⁻¹)	Đ	exo	endo +tri+ tetra	coup	PIBC1	$F_n(\alpha)^b$
1	ⁱ PrOH	19	78	6580	1.14	2	0	1	97	100
2	BuOH	19	100	9060	1.30	29	0	1	70	99
3	ⁱ PrOH	14	38	3030	1.18	2	0	1	97	100
4	BuOH	14	100	8650	1.20	18	0	1	81	98
5	ⁱ PrOH	9	22	1160	1.53	0	0	0	100	100
6	BuOH	9	27	2110	1.40	2	0	0	98	98

^a Conditions: [IB] = 1.2 M; [DiCumCl]=9mM; time: 1 min; CH_2Cl_2/n -hexane 40:60 v/v; ^b Fraction of difunctional PIB calculated from ¹H NMR spectroscopy

Figure S7. Geometric representation of optimized structures at BP86/def2-SVP level of theory. HB = hydrogen bond.

Structure	Fe	Cl(Fe)	Ο	Н	O(HB)
FeCl ₃	0.830	-0.276	-	-	-
Fe ₂ Cl ₆	0.514	-0.171	-	-	-
ⁱ Pr ₂ O	-	-	-0.512	-	-
CEE	-	-	-0.482	-	-
ⁱ PrOH	-	-	-0.707	0.465	-
BuOH	-	-	-0.702	0.468	-
Bu ₂ O	-	-	-0.490	-	-
H ₂ O	-	-	-0.932	0.466	-
FeCl ₃ - ⁱ Pr ₂ O	0.551	-0.276	-0.491	-	-
FeCl ₃ -CEE	0.578	-0.262	-0.474	-	-
FeCl ₃ — ⁱ PrOH	0.584	-0.273	-0.659	0.519	-
FeCl ₃ –BuOH	0.588	-0.273	-0.645	0.520	-
FeCl ₃ -Bu ₂ O	0.574	-0.274	-0.469	-	-
FeCl ₃ -2 ⁱ PrOH	0.567	-0.316	-0.664	0.512	-
FeCl ₃ -2 ⁱ PrOH (HB)	0.611	-0.298	-0.670	0.509	-0.714
FeCl ₃ -2BuOH	0.546	-0.309	-0.648	0.511	-
FeCl ₃ –2BuOH (HB)	0.614	-0.298	-0.662	0.506	-0.698
FeCl ₃ -2 ⁱ Pr ₂ O	0.546	-0.298	-0.498	-	-
FeCl ₃ -2CEE	0.512	-0.275	-0.474	-	-
FeCl ₃ -2Bu ₂ O	0.543	-0.305	-0.474	-	-
FeCl ₃ - ⁱ PrOH-H ₂ O	0.613	-0.295	-0.669	0.507	-0.913
FeCl ₃ -Bu ₂ O-H ₂ O	0.615	-0.295	-0.659	0.507	-0.909

Table S6. Average NBO Charges on atoms in different molecules and complexes (HB = hydrogen bond)

Table S7. One-Step Alkylation of Phenol by Living PIB Synthesized withCumCl/FeCl3×1.4ⁱPrOH Initiating System

Entry	Total ratio [living chain]/[PhOH]/[LA]	tal ratio n]/[PhOH]/[LA] M _n (SEC) (g/mol)		End g	$F_n(\alpha)^a$		
		(g/mor)		PIBC1	olefin	alkylated	
1	1/0/0.27	1130	1.28	95	5	-	100
2	1/10/0.27	1550	1.20	3	65	32	100
3	1/10/1.3	1890	1.25	0	30	70	100

Polymerization step: T: -80 °C; [IB]=1.2 M; [FeCl₃×1.4ⁱPrOH]=18 mM; [CumCl]=67 mM; CH₂Cl₂/*n*-hexane 40:60 v/v; M_n(theor)=1000 g mol⁻¹; time: 2 min. ^a Fraction of PIB chains containing fragment of initiator calculated from ¹H NMR spectroscopy. Alkylation step: T: -70 °C; [PIB]/[PhOH]=1:10. time: 5 h. Phenol (5 M solution in CH₂Cl₂) and FeCl₃×1.4ⁱPrOH were added to the system that leads to solidification of the system followed by the dilution of reaction mixture by CH₂Cl₂.

Table S8. One-Step Alkylation of Phenol by Living PIB Synthesized withDiCum/FeCl3×1.4ⁱPrOH Initiating System ^a

Entry	[PIB]/[PhOH]	Time	End group	$F_n(\alpha)^a$		
		(h)	PIBC1	olefin	alkylated	1 n(w)
1	-	-	70	30	-	100
2	1:10	2	0	87	13	98
3	1:10	4	0	90	10	89
4	1:10	120	0	86	14	93
5	1:20	2	0	57	43	99
6	1:20	5	0	27	73	99
7	1:40	1	0	31	69	100
8	1:40	2	0	13	87	100
9	1:40	2.5	0	0	100	100
10 ^b	1:40	1	0	0	100	100

Polymerization: T = -80 °C; [IB]=1.2 M; [FeCl₃×1.4ⁱPrOH]=18 mM; [DiCumCl] = 9 mM, CH₂Cl₂/hex 40:60 v/v; time: 2 min. Alkylation: solution of AlCl₃/PhOH in CH₂Cl₂ ([PhOH]=2.55 M; [AlCl₃] = 0.155 M) was added to the system, the alkylation conducted at room temperature.

^b Alkylation: solution of FeCl₃/PhOH in CH_2Cl_2 ([PhOH]=2.55 M; [FeCl₃] = 0.155 M) was added to the system.

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski and D. J. Fox, 2009, Gaussian 09, Revision B.01, Gaussian Inc., Wallingford CT, 2010.
- (2) A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- (3) (a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys*, 2005, 7, 3297. (b) B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson, T.L. Windus, *J. Chem. Inf. Model.*, 2019, 59(11), 4814.
- (4) (a) J. D. Walker, R. Poli, *Inorg. Chem.*, 1989, 28, 1793. (b) Z. Varga, M. Kolonits and M. Hargittai, *Inorg. Chem.*, 2010, 49, 1039. (c) I. A. Berezianko, P. A. Nikishau, I. V. Vasilenko, S. V. Kostjuk, *Polymer* 2021, 226, 123825.
- (5) M. T. Cances, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032.