Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2022

Electronic supplementary information for

Synthesis of Helically π -Stacked Poly(quinolylene-2,3-methylene)s with Anthracene Derivatives at the Chain-End: Intramolecular Energy Transfer Based on the π -Stacked Architecture

Naoya Kanbayashi,* Miho Nishio, Taka-aki Okamura and Kiyotaka Onitsuka*

Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

1. Experimental Section

- 1.1. General
- 1.2. Materials
- 1.3. Synthesis of Model Compounds

2-1. UV and CD Spectra

2-2. Determination of Energy Transfer efficiency

3. MS Spectrum

4. References

5. NMR Analysis

6. SEC Analysis

1. Experimental Section

General.

All reactions were carried out under an Ar atmosphere whereas the work-up was performed in air. NMR spectra were recorded on JEOL JNM-ECS400 and JEOL JNM-ECA500 spectrometers. In ¹H and ¹³C NMR, SiMe₄ was used as an internal standard, and an external 85% H₃PO₄ reference was used for ³¹P NMR. The number-average molar mass (M_n) and the molar mass dispersity (M_w/M_n) of the polymers were determined at 40 °C by size exclusion chromatography (SEC) using a SHIMADZU LC-10AS, SPD-10AD UV-vis detector, and CTO-10A column oven equipped with three SEC columns SHODEX GPC KF-805L using THF as an eluent, and calibrated against standard PS samples. CD spectra were obtained by JASCO J-720WO. UV-vis spectra were obtained by SHIMADZU UV 3100PC. Fluorescence spectra were measured by HORIBA FluoroMax-4. Absolute quantum yield was measured by HAMAMATSU C9920-02. ESI-HRMS measurements were carried out on Thermo Fisher Scientific LTQ-Orbitrap XL.

Materials

All solvents used for reactions were passed through purification columns just before use. Other chemicals reagents which are commercially available were used without further purification. Monomer 1 was prepared as reported previously.¹⁻²

Standard Method of model compound (poly-1a1-Anth(a-d)).

A solution of Pd(PPh₃)₄ (0.3 mmol, 1.0 eq.) and **Br-Anth** (0.3 mmol, 1.0 eq.) in toluene (3.0 mL) was stirred at 60 °C for overnight. The reaction mixture was concentrated under reduced pressure. The residue and 1,3-bis(diphenylphosphino)etane (0.6 mmol, 2.0 eq.) were dissolved with CH₂Cl₂ (15.0 mL) stirred for 5 min at 0 °C. After then, the mixture was added **1a** (0.2 mmol, 0.7 eq.) in CH₂Cl₂ (2.0 mL) at 0 °C. The mixture was stirred at 0 °C. After stirring for 30 min, the reaction mixture was concentrated under reduced pressure. NaBH₄ (3.0 mmol, 10.0 eq.) was added, dissolved with THF (8.0 mL) and stirred at 0 °C for 30 min. The reaction mixture was neutralized with sat NaHCO₃ aq, and extracted with AcOEt. The organic layer was dried over with anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (*n*-hexane/AcOEt = 10/1).

Synthesis of poly-1a1-Anth(a)

This compound was prepared from **Br-Anth(a)** (24.8 mg, 0.10 mmol) to give a yellow solid (31.8 mg, 52%). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.59 (s, 1H, Ar), 8.46 (d, 1H, *J* = 1.7 Hz, Ar), 8.28 (s, 1H, Ar), 8.22 (d, 1H, *J* = 8.8 Hz, Ar), 8.09 (d, 3H, *J* = 8.7 Hz, Ar), 7.50-7.45 (m, 2H, Ar), 7.34-7.31 (m, 4H, Ar), 6.90 (d, 1H, *J* = 7.7 Hz, N*H*), 4.92 (q, 1H, *J* = 6.1 Hz, CHCH₂), 4.25-4.20 (m, 2H, OCH₂), 2.07 (s, 3H, Ar-CH₃), 2.05 (m, 1H, CHCH₂(CH₂)₂CH₃), 1.90 (m, 1H, CHCH₂(CH₂)₂CH₃), 1.70 (m, 2H, OCH₂CH₂(CH₂)₇CH₃), 1.42-1.20 (m, 18H, OCH₂CH₂(CH₂)₇CH₃, CHCH₂(CH₂)₂CH₃), 0.94 (t, 3H, *J* = 7.1 Hz, CH(CH₂)₃CH₃), 0.88 (t, 3H, *J* = 7.0 Hz, O(CH₂)₉CH₃). HRMS (ESI): Calcd for C₄₁H₄₈N₂O₃ ([M+Na]⁺): m/z 639.3557, Found: m/z 639.3555.

Synthesis of poly-1a1-Anth(b)

This compound was prepared from **Br-Anth(b)** (102.3 mg, 0.30 mmol) to give a yellow solid (57.7 mg, 28%). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.48 (d, 1H, *J* = 2.0 Hz, Ar), 8.31 (s, 1H, Ar), 8.24 (d, 1H, *J* = 8.7 Hz, Ar), 8.10 (dd, 1H, *J* = 8.9, 1.8 Hz, Ar), 7.74-7.71 (m, 2H, Ar), 7.65-7.53 (m, 4H, Ar), 7.43-7.31 (m, 7H, Ar), 6.91 (d, 1H, *J* = 7.4 Hz, N*H*), 4.93 (q, 1H, *J* = 6.1 Hz, C*H*CH₂), 4.25-4.20 (m, 2H, OCH₂), 2.18 (s, 3H, Ar-CH₃), 2.05 (m, 1H, CHCH₂(CH₂)₂CH₃), 1.90 (m, 1H, CHCH₂(CH₂)₂CH₃), 1.71 (m, 2H, OCH₂CH₂(CH₂)₇CH₃), 1.44-1.20 (m, 18H, OCH₂CH₂(CH₂)₇CH₃, CHCH₂(CH₂)₂CH₃), 0.95 (t, 3H, *J* = 7.1 Hz, O(CH₂)₉CH₃), 0.89 (t, 3H, *J* = 7.0 Hz, CH(CH₂)₃CH₃). HRMS (ESI): Calcd for C₄₇H₅₂N₂O₃ ([M+Na]⁺): m/z 715.3870, Found: m/z 715.3868.

Synthesis of poly-1a1-Anth(c)

This compound was prepared from **Br-Anth**(c) (113.1 mg, 0.30 mmol) to give a yellow solid (79.3 mg, 32%). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.48 (s, 1H, Ar), 8.31 (s, 1H, Ar), 8.24 (d, 1H, *J* = 8.5 Hz, Ar), 8.10 (d, 1H, *J* = 8.6, Ar), 7.80 (m, 2H, Ar), 7.47 (m, 2H, Ar), 7.35-7.31 (m, 7H, Ar), 7.16 (m, 2H, Ar), 7.04 (m, 1H, Ar), 6.91 (d, 1H, *J* = 7.8 Hz, N*H*), 4.92 (q, 1H, *J* = 6.1 Hz, C*H*CH₂), 4.24-4.22 (m, 2H, OC*H*₂), 3.98 (s, 3H, OC*H*₃), 2.17 (s, 3H, Ar-C*H*₃), 2.07 (m, 1H, CHC*H*₂(CH₂)₂CH₃), 1.90 (m, 1H, CHC*H*₂(CH₂)₂CH₃), 1.71 (m, 2H, OCH₂C*H*₂(CH₂)₇CH₃), 1.41-1.25 (m, 18H, OCH₂CH₂(C*H*₂)₇CH₃, CHCH₂(C*H*₂)₂CH₃), 0.95 (t, 3H, *J* = 7.1 Hz, O(CH₂)₉C*H*₃), 0.89 (t, 3H, *J* = 7.0 Hz, CH(CH₂)₃C*H*₃). HRMS (ESI): Calcd for C₄₈H₅₄N₂O₄ ([M+Na]⁺): m/z 745.3976, Found: m/z 745.3973.

Synthesis of poly-1a1-Anth(d)

This compound was prepared from **Br-Anth(d)** (75.6 mg, 0.20 mmol) to give an orange solid (36.3 mg, 26%). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.53-8.49 (m, 3H, Ar), 8.33 (s, 1H, Ar), 8.24 (d, 1H, J = 8.1 Hz, Ar), 8.11 (d, 1H, J = 8.6 Hz, Ar), 7.77 (d, 1H, J = 8.0 Hz, Ar), 7.64-7.58 (m, 3H, Ar), 7.39-7.37 (m, 5H, Ar), 6.92 (d, 1H, J = 7.6 Hz, NH), 4.93 (q, 1H, J = 6.1 Hz, CHCH₂), 4.32-4.20 (m, 2H, OCH₂), 2.18 (s, 3H, Ar-CH₃), 2.04 (m, 1H, CHCH₂(CH₂)₂CH₃), 1.90 (m, 1H, CHCH₂(CH₂)₂CH₃), 1.71 (m, 2H, OCH₂CH₂(CH₂)₇CH₃), 1.45-1.28 (m, 18H, OCH₂CH₂(CH₂)₇CH₃, CHCH₂(CH₂)₂CH₃), 0.95 (t, 3H, J = 7.1 Hz, O(CH₂)₉CH₃), 0.91 (t, 3H, J = 7.0 Hz, CH(CH₂)₃CH₃). HRMS (ESI): Calcd for C₄₇H₅₁N₃O₅ ([M+Na]⁺): m/z 760.3721, Found: m/z 760.3719.

2. CD, UV, and emission spectra

Fig S1. CD and UV spectra of poly-1a₂₀-Anth(a) (green line) and poly-1a₂₀-Me (gray line).

Fig S2. (a) UV, (b) emission excited at 330 nm, and (c) excitation at 380 nm spectra in $CHCl_3$ of **poly-1** a_{20} -Me.

Fig S3. Excitation spectra of **poly-1a₂₀-Anth(a)** (blue line) and **poly-1a₁-Anth(a)** (green line) at 430 nm in CHCl₃. The spectra were normalized by the peak top of anthracenyl group.

Fig S4. Emission spectra of **poly-1a₂₀-Me** (grey line), **poly-1a₁-Anth(a)** (green line), and a mixture of **poly-1a₂₀-Me** and **poly-1a₁-Anth(a)** (dashed pink line) in CHCl₃ at excited 330 nm. The sum of the spectra of **poly-1a₂₀-Me** and **poly-1a₁-Anth(a)** (dashed orange line). The spectra were normalized by molecular concentration.

In our previous study,³ when the π -stacking structure was collapsed, the absorption band at 315 and 329 nm was appeared. Compared with the UV spectra **poly-1a₂₀-Anth(a)** (green line) and **poly-1c₂₀-Anth(a)** (purple line), the UV spectrum of **poly-1b₂₀-Anth(a)** (pink line) shows a weaker absorption band at 316 and 330 nm originated from aromatic chromophores without π -stacking conformation, which is in agreement with previous results of **poly-1₂₀-Me** bearing methyl group at α -chain end. These results suggested that **poly-1b₂₀-Anth(a)** forms an incomplete π -stacked structure.

Fig S5. CD and UV spectra of poly **poly-1a₂₀-Anth(a)** (green line), **poly-1b₂₀-Anth(a)** (pink line) and **poly-1c₂₀-Anth(a)** (purple line).

Fig S6. Excitation spectra of poly **poly-1a₂₀-Anth(a)** (green line), **poly-1b₂₀-Anth(a)** (red line), **poly-1c₂₀-Anth(a)** (purple line) and **poly-1a₁-Anth(a)** (orange line) excited at 430 nm in CHCl₃.

2-2 Determination of Energy Transfer Efficiency

The energy transfer efficiency (*E*) was determined using photoluminescent quantum yield (Φ_{PL}) and molar absorption coefficients (ε) of **poly-1**_n-**Anth**, **poly-1**_n-**Me**, and **poly-1**₁-**Anth** (model), according to the reported formula,³ as described below. The calculation method of energy transfer efficiency of **poly-1a**₂₀-**Anth**(**a**) using the Φ_{PL} and ε derived form **poly-1a**₂₀-**Anth**(**a**), **poly-1a**₂₀-**Me** and **poly-1a**₁-**Anth**(**a**) is shown below.

$$\Phi_{\text{poly-Anth}} = \{(1-\boldsymbol{E}) \times (\epsilon_{\text{poly-Me}}/\epsilon_{\text{poly-Anth}}) \times \Phi_{\text{poly-Me}}\} + \{\boldsymbol{E} \times (\epsilon_{\text{poly-Me}}/\epsilon_{\text{poly-Anth}}) \times \Phi_{\text{model}}\} + \{(\epsilon_{\text{model}}/\epsilon_{\text{poly-Anth}}) \times \Phi_{\text{model}}\}$$

 $\begin{array}{l} \textbf{poly-1a_{20}-Anth(a):} \ \Phi_{\text{poly-anth}} = 5.5\%, \ \Phi_{\text{poly-Me}} = 2.3\%, \ \Phi_{\text{model}} = 10.1\%, \ \epsilon_{\text{poly-Me}}/\epsilon_{\text{poly-anth}} = 0.88, \\ \epsilon_{\text{model}}/\epsilon_{\text{poly-anth}} = 0.12 \end{array}$

 $5.5 = \{(1-E) \times (0.88) \times 2.3\} + \{E \times (0.88) \times 10.1\} + \{(0.12) \times 10.1\}$ E = 34%

3. MS Spectrum

Fig S7. ESI-Orbitrap MS spectrum of **poly-1a₇-Anth(a)** ($M_{n(SEC)} = 2100$, $M_w/M_n = 1.12$; [**1a**]/[**Pd-Anth(a**)] = 7) in MeOH/CH₂Cl₂ (= 1/1). The Expand spectra of **poly-1a₅-Anth(a)** (z = 2).

3. References

1.Kanbayashi, N.; Kataoka, Y.; Okamura, T.; Onitsuka, K., Stability Enhancement of a π -Stacked Helical Structure Using Substituents of an Amino Acid Side Chain: Helix Formation via a Nucleation–Elongation Mechanism. *J. Am. Chem. Soc.* **2022**, *144* (13), 6080-6090.

2.Kataoka, Y.; Kanbayashi, N.; Fujii, N.; Okamura, T.; Haino, T.; Onitsuka, K., Construction of Helically Stacked π -Electron Systems in Poly(quinolylene-2,3-methylene) Stabilized by Intramolecular Hydrogen Bonds. *Angew. Chem. Int. Ed.* **2020**, *59* (26), 10286-10291.

3. T. Nishikawa, Y. Nagata and M. Suginome, Poly(quinoxaline-2,3-diyl) as a Multifunctional Chiral Scaffold for Circularly Polarized Luminescent Materials: Color Tuning, Energy Transfer, and Switching of the CPL Handedness. *ACS Macro Lett.*, **2017**, *6*, 431-435.

¹H NMR in CDCl₃ at 25 $^{\circ}$ C

 ^{31}P NMR in CDCl₃ at 25 $^\circ\text{C}$

¹H NMR in CDCl₃ at 25 $^{\circ}$ C

 ^{31}P NMR in CDCl₃ at 25 $^\circ\text{C}$

 ^{31}P NMR in CDCl₃ at 25 $^\circ\text{C}$

6. SEC Analysis

Ph ₃ P-Pd-PPh ₃	$Ph_2P \xrightarrow{PPh_2} R$		CF3COOH H		
	CH ₂ Cl ₂ , 25 °C [monomer]/[Pd] = <i>n</i>		CH ₂ Cl ₂ 0 °C	$R = \frac{1}{2}$	
_		n		M.	

	Entry	<i>n</i> (= [1a]/[Pd])	Yield	<i>M</i> n (g mol ⁻¹)	$M_{ m w}/M_{ m n}$
	1	10	82	3300	1.11
	2	20	90	5800	1.15
	3	30	91	7300	1.32
_	4	50	93	12 500	1.47

SEC curves

in THF at 40 °C *n* = 10 20 30 50 **24** 26 28 30 32 Elution time (min)

poly-1a₂₀-Anth(d) $M_n = 6700 \text{ g mol}^{-1}$ $M_w/M_n = 1.15$ 20 25 30 35 Elution time (min.)

in THF 40 °C

Molar mass and molecular weight distribution are determined by SEC using polystyrene standards.