Diverse Chemically Recyclable Polymers by Cationic Vinyl and Ring-Opening Polymerizations of Cyclic Ketene Acetal Ester "Dehydroaspirin"

Akane Kazama,^a Yasuhiro Kohsaka^{a, b,*}

(^aFaculty of Textile Science and Technology, Shinshu University, ^bResearch Initiative for Supra-Materials (RISM), Shinshu University)

3-15-1 Tokida, Ueda, Nagano 386-8567, JAPAN; Tel +81-268-21-5488; e-mail kohsaka@shinshu-u.ac.jp

Electronic Supplementary Information

Proposed mechanism

- i. A formation of hemiacetal [A] via hydrolysis of hemiacetal ester .
- ii. Protonation of the carbonyl group in neighboring unit.
- iii. Decomposition of hemiacetal [A] accompanying with main chain scission.
- iv. The formed exo-methylene accepts water addition to form hemiacetal [A]-end
- v. Elimination of aspirin from [A]-end
- vi. Hydrolysis of ester [B]-end to a similar [B]-end and aspirin in enol-form.
- vii. Hydrolysis of aspirin to acetic acid and salicylic acid

Scheme S1. Proposed mechanism of degradation of MBDO vinyl polymer.

	Fee	ed b			Ŭ	mv. [%]	9		Comp.	. [%] b		F^2			
Entry ^a	MBDO	MMA	F	Time	MBDO	MMA		Yield [%] °	MBDO	MMA	f	<u>_</u>	à	μ	×v
	$[M_1]_0$	$[M_2]_0$			$[M_1]$	$[M_2]$	A۷	- -	$[M_1]$	$[M_2]$					
S1	90.8	9.16	9.92	60	5.81	38.5	22.1	2.10	50.8	49.2	1.03	95.3		0.0029	0.941
S2	70.9	29.1	2.43	120	4.56	36.9	20.7	5.06	29.2	70.8	0.412	14.3		-0.171	0.707
S3	51.4	48.6	1.06	180	1.00	30.5	15.7	11.8	16.8	83.2	0.202	5.55	5.95	-0.340	0.320
$\mathbf{S4}$	31.6	68.4	0.462	180	1.27	28.8	15.0	18.6	10.4	89.6	0.116	1.85		-0.454	0.237
S5	10.4	89.6	0.116	180	7.72	33.4	20.5	20.5	3.47	96.5	0.0360	0.371		-0.490	0.059

Ŋ
50 °
at (
ene
tolu
п.
BN
ΎΑΙ
d by
ated
initi
IA
Å
pu
õ
BD
fΜ
o u
atic
eriz
lym
ode
al c
dic
Ra
S1.
ble
Ta

Figure S1. SEC spectra of acid hydrolysis of poly(MBDO-co-MMA). (40 °C, THF)

Figure S2. SEC spectra at each reaction time of base hydrolysis of vinyl poly(MBDO). (40 °C, DMF)

Figure S3. SEC curves of Entry 5 and 18 in Table 2. Entry 5 is THF-soluble fraction.

Figure S4. Structure of hemiacetal ester cation predicted by DFT calculation (B3LYP 6-31+G*).

Figure S6. IR spectra of CHCl₃ soluble and insoluble fraction of Entries 0-3.

Figure S7. ¹H NMR spectra of cationic polymerization of MBDO initiated by IBVE-OAc, $ZnCl_2$ and ethyl acetate (400 MHz, 26 °C, DMSO- d_6). *:DMSO, •:water, °:acetic acid, \checkmark :diethyl ether, ×:salicylic acid.

Figure S8. ¹H NMR spectra of cationic polymerization of MBDO initiated by IBVE-OAc, SnCl₄ and ethyl acetate (400 MHz, 26 °C, DMSO- d_6). *: DMSO, •: water, \forall : diethyl ether.

Figure S9. IR spectra of cationic polymerization of MBDO initiated by IBVE-OAc, EtAlCl₂ and ethyl acetate

Scheme S2. Cationic polymerization of MBDO initiated with IBVE-OAc and $EtAlCl_2$ in the presence of ethyl acetate in toluene.

OAc and EtAIC ₁₂ in the presence of ethyl acetate in toluene.							
Entry	Temp [°C]	Conv. ª [%]	Yield [%]	$M_n{}^{ m b}$	$D^{ \mathfrak{b}}$	ROP° [%]	
18	-78	53.8	4.3	1600	1.21	100	
S 6	- 63	60.9	2.4	N. D.	N. D.	100	
19	-40	35.3	3.3	1700	1.21	100	
S 7	-20	31.4	2.2	600 ^d	1.06 ^d	100	
20	$\Box \Box 0$	35.1	10.0	$1600^{\text{ d}}$	1.24 ^d	73.4	
21		28.2	11.3	$1800^{\text{ d}}$	1.36 ^d	49.7	
22		23.4	07.9	1800^{d}	1.43 ^d	42.2	
S8		44.1	02.2	$1400^{\text{ d}}$	1.53 ^d	45.9	

Table S2. Cationic polymerization of MBDO initiated with IBVE-OAc and $EtAlCl_2$ in the presence of ethyl acetate in toluene.

^aDetermined by GC. ^bDetermined by SEC (40.0 °C, THF). ^cDetermined by ¹³C NMR spectrum (100 MHz, 25 °C, DMSO-*d*₆). ^dInsoluble in THF.

Scheme S3. Cationic polymerization of MBDO initiated with BF₃·Et₂O and benzoic anhydride in toluene.

Figure S10. ¹H NMR spectra of the polymers obtained via cationic polymerization of MBDO initiated with $BF_3 \cdot Et_2O$ and benzoic anhydride in toluene.(400 MHz, CDCl₃, 25 °C). *: CDCl₃, ×: diethyl ether.

Table S3. Cationic polymerization of MBDO initiated with							
BF ₃ ·Et ₂ O and benzoic anhydride in toluene.							
Entry	Temp [°C]	Conv. ª [%]	Yield [%]	$M_n{}^{\mathrm{b}}$	Đь		
S9	-78	19.9	14.9	2000 ^d	1.23 ^d		
S10	0	38.5	32.8	1200 ^d	1.07^{d}		
S11	40	70.0	14.9	1700^{d}	1.46 ^d		
^a Determined by GC. ^b Determined by SEC(40.0 °C,THF). ^c Determined by							

¹³C NMR spectrum(400 MHz, 25 °C, DMSO-*d*₆). ^dInsoluble in THF.