Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2022

Morphological Evolution of Poly(glycerol monomethacrylate-stat-Glycine-Phenylalanine-Phenylalanine-methacrylamide-b-Poly(2hydroxypropylmethacrylate)

T. P. Tuyen Dao^{a,b,c}, Lubomir Vezenkov^c, Gilles Subra^c, Muriel Amblard^c, Vincent Ladmiral^b, Mona Semsarilar^{a*}

- a. Institut Européen des Membranes IEM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
- b. Institut Charles Gerhardt Montpellier ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
- c. Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.

SUPPORTING INFORMATION

(a)

(c)

Figure S1. Chemical structure and 1 H NMR spectrum in DMSO-d6 of (a) P(GMA $_{24}$ -stat-(MAm-GFF) $_3$) (mCTA 1), (b) P(GMA $_{65}$ -stat-(MAm-GFF) $_7$) (mCTA 2) and (c) P(GMA $_{200}$ -stat-(MAm-GFF) $_9$) (mCTA 3).

Determination of the mCTA DP and composition

The DP and composition of the mCTA were calculated from the GMA and MAM-GFF conversions determined by ¹H NMR spectroscopy and the target DP of each monomers, as described in *Macromolecules* **2020**, 53, 16, 7034–7043.

 $DP_{MAM\text{-}GFF} = [MAM\text{-}GFF]_0 / [PETTC]_0 \ x \ \alpha_{MAM\text{-}GFF} \ and \ DP_{GMA} = [GMA]_0 / [PETTC]_0 \ x \ \alpha_{GMA} \ , \ where \ \alpha_{MAM\text{-}GFF} \ and \ \alpha_{GMA} \ are the conversions in MAM\text{-}GFF \ and GMA \ respectively.$

Figure S2. DMF SEC data of P(GMA₂₄-stat-(MAm-GFF)₃) (mCTA 1), P(GMA₆₅-stat-(MAm-GFF)₇) (mCTA 2) and DMAc SEC data P(GMA₂₀₀-stat-(MAm-GFF)₉) (mCTA 3).

Figure S3. Intensity-average hydrodynamic diameter distributions of P(GMA₂₄-stat-(MAm-GFF)₃) (mCTA 1) and P(GMA₆₅-stat-(MAm-GFF)₇) (mCTA 2) in MilliQ water at 0.1 % w/w at 30°C.

Table S1. Molecular characterization (SEC in DMF) of P(GMA-stat-(MAm-GFF)) macro-CTAs and P(GMA-stat-(MAm-GFF))-b-PHPMA synthesized at 10% w/w solids via RAFT dispersion polymerization of HPMA in water and water-ethanol mixtures at 70 °C.

No.	Composition	Solvent	Mn (g/mol)	Mw (g/mol)	Đ
1	G ₂₄ M ₃	DMF	6600	8900	1.35
2	G ₂₄ M ₃ H ₁₄	H ₂ O	10200	13300	1.31
3	$G_{24} M_3 H_{29}$	H ₂ O	13700	16590	1.23
4	G ₂₄ M ₃ H ₅₈	H ₂ O	18100	21800	1.21
5	G ₂₄ M ₃ H ₁₀₈	H ₂ O	37400	46000	1.23
6	G ₆₅ M ₇	DMF	13300	17000	1.28
7	$G_{65} M_7 H_{42}$	H ₂ O	23100	29000	1.26
8	G ₆₅ M ₇ H ₅₄	H_2O	27000	33600	1.24
9	G ₆₅ M ₇ H ₆₃	H ₂ O	33700	42000	1.25
10	$G_{65} M_7 H_{200}$	H ₂ O	60000	74700	1.25
11	G ₆₅ M ₇ H ₆₆	1 H ₂ O : 1 EtOH	34200	43000	1.24
12	$G_{65} M_7 H_{66}$	1.2 H ₂ O : 0.8 EtOH	34000	43000	1.26
13	G ₆₅ M ₇ H ₆₆	1.6 H ₂ O : 0.4 EtOH	33900	42000	1.24
14	$G_{200} M_9$	DMF	32100	44000	1.36
15	$G_{200} M_9 H_{51}$	H₂O	80300	107000	1.33
16	$G_{200} M_9 H_{102}$	H_zO	130400	172000	1.33
17	$G_{200} M_9 H_{250}$	H ₂ O	241000	309500	1.28
18	G ₂₀₀ M ₉ H ₅₁₀	H ₂ O	524700	645400	1.23