Morphological Evolution of Poly(glycerol monomethacrylate-stat-Glycine-Phenylalanine-Phenylalanine-methacrylamide-b-Poly(2hydroxypropylmethacrylate)

T. P. Tuyen Dao ${ }^{\text {a,b,c },}$, Lubomir Vezenkov ${ }^{c}$, Gilles Subrac ${ }^{c}$, Muriel Amblard ${ }^{c}$, Vincent Ladmiral ${ }^{b}$, Mona Semsarilara*
a. Institut Européen des Membranes IEM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
b. Institut Charles Gerhardt Montpellier ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
c. Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.

SUPPORTING INFORMATION

(a)

(b)

(c)

Figure S1. Chemical structure and ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 of (a) P(GMA 24 -stat-(MAm-GFF) $)_{3}$) (mCTA 1), (b) P(GMA ($_{65}-$ stat-(MAm-GFF) $)_{7}$) (mCTA 2) and (c) P(GMA 200-stat-(MAm-GFF) $_{9}$) (mCTA 3).

Determination of the mCTA DP and composition

The DP and composition of the mCTA were calculated from the GMA and MAM-GFF conversions determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy and the target DP of each monomers, as described in Macromolecules 2020, 53, 16, 7034-7043.
$\mathrm{DP}_{\text {MAM-GFF }}=[\mathrm{MAM-GFF}]_{0} /\left[\right.$ PETTC $_{0} \times \alpha_{\text {MAM-GFF }}$ and DP GMA $=[\mathrm{GMA}]_{0} /[\text { PETTC }]_{0} \times \alpha_{G M A}$, where $\alpha_{\text {MAM-GFF }}$ and $\alpha_{\text {GMA }}$ are the conversions in MAM-GFF and GMA respectively.

Figure S2. DMF SEC data of $\left.\mathrm{P}\left(\mathrm{GMA}_{24}-\text { stat-(MAm-GFF) }\right)_{3}\right)(\mathrm{mCTA} 1), \mathrm{P}\left(\mathrm{GMA}_{65}-\right.$ stat- $\left.(\mathrm{MAm}-\mathrm{GFF})_{7}\right)(\mathrm{mCTA} \mathbf{2})$ and DMAc SEC data $\mathrm{P}\left(\mathrm{GMA}_{200}\right.$-stat-(MAm-GFF) $)$ (mCTA 3).

Figure S3. Intensity-average hydrodynamic diameter distributions of $\mathrm{P}\left(\mathrm{GMA}_{24}\right.$-stat- $\left.(\mathrm{MAm}-\mathrm{GFF})_{3}\right)$ (mCTA 1) and $\mathrm{P}\left(\mathrm{GMA}_{65}-\right.$-stat- $(\mathrm{MAm}-$ (GFF) $)_{\text {) }}$ (mCTA 2) in MilliQ water at $0.1 \% \mathrm{w} / \mathrm{w}$ at $30^{\circ} \mathrm{C}$.

Table S1. Molecular characterization (SEC in DMF) of P(GMA-stat-(MAm-GFF)) macro-CTAs and P(GMA-stat-(MAm-GFF))-b-PHPMA synthesized at $10 \% \mathrm{w} / \mathrm{w}$ solids via RAFT dispersion polymerization of HPMA in water and water-ethanol mixtures at $70^{\circ} \mathrm{C}$.

No.	Composition	Solvent	Mn (g/mol)	Mw (g/mol)	Đ
1	$\mathrm{G}_{24} \mathrm{M}_{3}$	DMF	6600	8900	1.35
2	$\mathrm{G}_{24} \mathrm{M}_{3} \mathrm{H}_{14}$	$\mathrm{H}_{2} \mathrm{O}$	10200	13300	1.31
3	$\mathrm{G}_{24} \mathrm{M}_{3} \mathrm{H}_{29}$	$\mathrm{H}_{2} \mathrm{O}$	13700	16590	1.23
4	$\mathrm{G}_{24} \mathrm{M}_{3} \mathrm{H}_{58}$	$\mathrm{H}_{2} \mathrm{O}$	18100	21800	1.21
5	$\mathrm{G}_{24} \mathrm{M}_{3} \mathrm{H}_{108}$	$\mathrm{H}_{2} \mathrm{O}$	37400	46000	1.23
6	$\mathrm{G}_{65} \mathrm{M}_{7}$	DMF	13300	17000	1.28
7	$\mathrm{G}_{65} \mathrm{M}_{7} \mathrm{H}_{42}$	$\mathrm{H}_{2} \mathrm{O}$	23100	29000	1.26
8	$\mathrm{G}_{65} \mathrm{M}_{7} \mathrm{H}_{54}$	$\mathrm{H}_{2} \mathrm{O}$	27000	33600	1.24
9	$\mathrm{G}_{65} \mathrm{M}_{7} \mathrm{H}_{63}$	$\mathrm{H}_{2} \mathrm{O}$	33700	42000	1.25
10	$\mathrm{G}_{65} \mathrm{M}_{7} \mathrm{H}_{200}$	$\mathrm{H}_{2} \mathrm{O}$	60000	74700	1.25
11	$\mathrm{G}_{65} \mathrm{M}_{7} \mathrm{H}_{66}$	$1 \mathrm{H}_{2} \mathrm{O}: 1 \mathrm{EtOH}$	34200	43000	1.24
12	$\mathrm{G}_{65} \mathrm{M}_{7} \mathrm{H}_{66}$	$1.2 \mathrm{H}_{2} \mathrm{O}: 0.8 \mathrm{EtOH}$	34000	43000	1.26
13	$\mathrm{G}_{65} \mathrm{M}_{7} \mathrm{H}_{66}$	$1.6 \mathrm{H}_{2} \mathrm{O}: 0.4 \mathrm{EtOH}$	33900	42000	1.24
14	$\mathrm{G}_{200} \mathrm{M}_{9}$	DMF	32100	44000	1.36
15	$\mathrm{G}_{200} \mathrm{M}_{9} \mathrm{H}_{51}$	$\mathrm{H}_{2} \mathrm{O}$	80300	107000	1.33
16	$\mathrm{G}_{200} \mathrm{M}_{9} \mathrm{H}_{102}$	$\mathrm{H}_{2} \mathrm{O}$	130400	172000	1.33
17	$\mathrm{G}_{200} \mathrm{M}_{9} \mathrm{H}_{250}$	$\mathrm{H}_{2} \mathrm{O}$	241000	309500	1.28
18	$\mathrm{G}_{200} \mathrm{M}_{9} \mathrm{H}_{510}$	$\mathrm{H}_{2} \mathrm{O}$	524700	645400	1.23

