Supporting Information

Conformational, Crystalline and Rheological Properties of Poly(octadecyl-*co*-methyl acrylate) Statistically Random Copolymers

Xuejun Pan,^{1,3,†} Weiling Wu,^{4,†} Mo Zhu,^{1,†} Jixian Yang,¹ Zhi-Chao Yan^{2*} and Lianwei Li^{1,*}

¹College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China

²School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

³Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

⁴Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials,

College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China

^{*}To whom corresponding should be addressed:

Zhi-Chao Yan: zcyan@gdut.edu.cn; Lianwei Li: lianweili@szu.edu.cn

Calculation of dn/dc **Values for P(ODA**_{*x*}-*stat*-**MA**_{*y*})_{*N*b} **copolymers**. In this work, we used the classical additive rule to extract (dn/dc)_{comb} for P(ODA_{*x*}-*stat*-MA_{*y*})_{*N*b} copolymers. Before calculating (dn/dc)_{comb}, dn/dc of homopolymer PMA and PODA must be obtained first. First of all, for P*t*BA, the precursor chain of PMA, we already know that its real dn/dc value is 0.052 according to previous work.¹ Therefore, by using QD-SEC, we can know the absolute molar mass of P*t*BA, through which we can calculate the true N_b of PMA, thus we can know the true molar mass of the corresponding homopolymer PMA and PODA. Furthermore, we do know that the output value of M_w by QD-SEC is inversely proportional to the input value of (dn/dc)_{comb} during the analysis process of QD-SEC data, which further leads to

$$M_{\rm LS} = \Gamma / \left[\left(dn / dc \right)_{\rm comb} \right] \tag{1}$$

where the pre-factor Γ is a feature parameter and Γ possesses a unique numerical value for a specific sample. More importantly, Γ for each P(ODA_x-stat-MA_y)_{Nb} sample can be easily determined in QD-SEC measurement. By using equation 1, we can characterize PMA and PODA and calculate their dn/dc as 0.076 and 0.071 respectively, which are very close to the values given in literature and polymer handbook.²⁻³ In addition, the expression of copolymer $(dn/dc)_{comb}$ value can be expressed as follows:

$$(dn / dc)_{\text{comb}} = wt \%_{\text{PMA}} (dn / dc)_{\text{PMA}} + wt \%_{\text{PODA}} (dn / dc)_{\text{PODA}} = \frac{M_{\text{MA}} (1 - x)}{M_{\text{MA}} (1 - x) + M_{\text{ODA}} x} (dn / dc)_{\text{PMA}} + \frac{M_{\text{ODA}} x}{M_{\text{MA}} (1 - x) + M_{\text{ODA}} x} (dn / dc)_{\text{PODA}}$$
(2)

 $M_{\rm MA}$: the molar mass of a monomer unit on backbone, and $M_{\rm MA} = 86$ g/mol.

 M_{ODA} : the molar mass of sidechain (ODA) and $M_{\text{ODA}} = 324$ g/mol.

x: the molar fraction of ODA.

wt%_{PMA}: the mass percentage of PMA.

wt%_{PODA}: the mass percentage of PODA.

 $(dn/dc)_{comb}$: the refractive index increment of P(ODA_x-stat-MA_y)_{Nb} polymers.

 $(dn/dc)_{PMA}$: the refraction index increment of PMA, and $(dn/dc)_{PMA} = 0.076 \text{ mL/g}$.

 $(dn/dc)_{PODA}$: the refraction index increment of PODA, and $(dn/dc)_{graft} = 0.071 \text{ mL/g}$.

By using equation 2, we can calculate $(dn/dc)_{comb}$ of each sample. And inputting the corresponding $(dn/dc)_{comb}$ value into QD-SEC analysis software, we can get the corresponding absolute parameters of each sample. In addition to the molar mass given by QD-SEC, by using the *x* calculated by ¹H-NMR spectrum analysis, we can also calculate the theoretical molar mass based on ¹H-NMR information through the Equation 3:

$$M_{\rm NMR} = N_{\rm b} [M_{\rm MA}(1-x) + M_{\rm ODA}x]$$
(3)

All parameter information is summarized in Table S2-4.

Sample	$M_{ m w-LS}$	$M_{\text{p-LS}}$	$< M_{\rm w}/$	N
	/(g/mol)	/(g/mol)	$M_{\rm n}>$	IVb
PtBA ₃₄₅	4.05×10^4	4.12×10^4	1.08	345
PtBA1100	1.25×10^{5}	1.41×10^{5}	1.13	1100
PtBA1740	2.17×10^5	2.23×10^{5}	1.14	1740
PtBA2750	3.49×10^{3}	3.52×10^5	1.23	2750

Table S1. Summarized molecular parameters of four PtBA precursors determined by QD-SEC.

Table S2. Summarized molecular parameters of $P(ODA_x$ -stat- $MA_y)_{345}$ polymers by QD-SEC and ¹H-NMR.

$P(ODA_x-stat-MA_y)_{345}$	M _{p-NMR} /(g/mol)	M _{p-LS} /(g/mol)	$<\!\!M_{\rm w}\!/M_{\rm n}\!>$	R_{η}/nm	[η] /(mL/g)
0	2.97×10^4	2.97×10^4	1.06	4.46	21.80
0.29	4.65×10^4	5.31×10^{5}	1.14	5.68	25.95
0.47	6.14×10^4	6.84×10^4	1.12	6.23	25.60
0.68	7.92×10^4	8.58×10^4	1.12	6.72	24.72
0.87	8.83×10^5	1.01×10^{5}	1.08	6.97	24.08
0.99	1.11×10^5	1.11×10^{5}	1.10	7.27	23.45

Table S3. Summarized molecular parameters of $P(ODA_x$ -stat- $MA_y)_{1100}$ polymers by QD-SEC and ¹H-NMR.

$P(ODA_x-stat-MA_y)_{1100}$	M_{p-NMR} /(g/mol)	M _{p-LS} /(g/mol)	$<\!\!M_{\rm w}\!/M_{\rm n}\!>$	<i>R</i> _η /nm	[η] /(mL/g)
0	9.46×10^4	9.07×10^4	1.07	12.07	53.52
0.13	1.29×10^{5}	1.56×10^{5}	1.15	11.45	65.93
0.39	1.98×10^5	2.07×10^{5}	1.08	13.37	64.23
0.45	2.11×10^5	2.42×10^5	1.09	12.73	66.04
0.81	3.07×10^5	3.38×10^{5}	1.09	14.58	60.64
0.99	3.53×10^5	3.80×10^5	1.08	15.15	58.30

$P(ODA_x$ -stat- $MA_y)_{1740}$	M _{p-NMR} /(g/mol)	M _{p-LS} /(g/mol)	$<\!\!M_{\rm w}\!/M_{\rm n}\!>$	R_{η}/nm	[η] /(mL/g)
0	1.50×10^{5}	1.53×10^5	1.11	13.46	68.32
0.23	2.46×10^5	2.39×10^{5}	1.18	15.13	86.42
0.46	3.41×10^{5}	3.27×10^5	1.19	16.13	82.91
0.65	4.20×10^{5}	4.31×10^5	1.16	17.48	79.58
0.86	5.05×10^{5}	5.00×10^5	1.15	18.36	77.95
0.97	5.53×10^5	5.58×10^5	1.15	18.89	74.87

Table S4. Summarized molecular parameters of $P(ODA_x$ -stat-MA_y)₁₇₄₀ polymers by QD-SEC and ¹H-NMR.

Figure S1. ¹H-NMR spectrum of polymethyl acrylate (PMA) with different backbone length (N_b =345, 1100, 1740) and side chain ($C_{18}H_{37}Br$) in CDCl₃.

Figure S2. (a) SEC curves of PtBA₂₇₅₀ and P(ODA_{0.99}-stat-MA_{0.01})₂₇₅₀ SEC. (b) ¹H-NMR

Figure S3. (a) SEC curves of P(ODA_x-stat-MA_y)₁₇₄₀ with three different x (x = 0.23, 0.86, 0.97). (b) Molar mass (*M*) dependences of intrinsic viscosity ([η]) for P(ODA_x-stat-MA_y)₁₇₄₀ with three different x (x = 0.23, 0.86, 0.97).

In Figures S4a-e, the zero-shear viscosity was obtained by averaging the points in the shear rate independent regime, while the zero-shear viscosity in figure S4f was obtained by the Carreau fitting.⁴

Figure S4. Viscosity (η) as a function of shear rate ($\dot{\gamma}$) for samples with (a) P(ODA_{0.29}-stat-MA_{0.71})₃₄₅, (b) P(ODA_{0.47}-stat-MA_{0.53})₃₄₅, (c) P(ODA_{0.68}-stat-MA_{0.32})₃₄₅, (d) P(ODA_{0.87}-stat-MA_{0.13})₃₄₅, (e) P(ODA_{0.99}-stat-MA_{0.01})₃₄₅ and (f) Viscosity (η) as a function of frequency (ω) for sample of P(ODA_{0.99}-stat-MA_{0.013})₂₇₅₀.

References

- Pan, X.; Ishaq, M. W.; Umair, A.; Ali, M. W.; Li, L., Evolution of Single Chain Conformation for Model Comb-Like Chains with Grafting Density Ranging from 0 to similar to 100% in Dilute Solution. ACS Macro Letters 2019, 8 (12), 1535-1540.
- 2. Jordan Jr, E. F., Heterogeneity Parameters by Light Scattering for Statistical Copolymers Incorporating Long Side-chain Comonomers. *J Polym Sci Pol Chem* **1968**, *6* (8), 2209-2219.
- 3. Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R., (Eds.), Polymer Handbook. *Wiley: New York*, **1999**.
- 4. Macosko, C. W.; Larson, R. G., Rheology: Principles, Measurements, and Applications. *Wiley: New York*, **1994**.