{This document replaces the previous version which contained some errors in signal assignments in Fig. S1, S2, S3}

Supporting Information

Novel degradable amphiphilic 4-arm star PLA-b-POEOA and PLGA-b-POEOA block

copolymers: synthesis, characterization and self-assembly

Andreia S. R. Oliveira,^a Patrícia Pereira,^{a,b} Patrícia V. Mendonça,^{a*} Ana C. Fonseca,^a

Sérgio Simões,^{c,d} Arménio C. Serra^a and Jorge F. J. Coelho^{a,b*}

^a University of Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal

^b IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal

^c University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal

^d Bluepharma, Indústria Farmacêutica, SA, São Martinho do Bispo, 3045-016 Coimbra, Portugal

Table S1. Architecture, composition and molecular weight parameters of the BCPs obtained by ICAR ATRP from polyester macroinitiators (prepared by ROP). Conditions: $[OEOA]_0/[polyester-Br]_0/[CuBr_2]_0/[Me_6TREN]_0/[V-50]_0 = DP/1/0.16/0.32/1.2 (molar); [OEOA]_0 = 1 M; Solvent: DMF; <math>T = 60$ °C

Entry	Polymer	DP OEOA	Time (h)	Conv. (%)	Mn ^{NMR} x 10 ⁻³	Mn ^{SEC} x 10 ⁻³	<i>M</i> w/ <i>M</i> n
1	(PLA5-b-POEOA13)4	52	7.5	99	27.9	16.0	1.33
2	(PLA ₆ -b-POEOA ₃₁) ₄	150ª	24	84	65.1	22.6	1.62
3	(PLGA6- <i>b</i> -POEOA12)4 (PLGA 50:50)	48	24	99	26.2	14.9	1.41
4	(PLGA ₆ - <i>b</i> -POEOA ₁₁) ₄ (PLGA 75:25)	50	4	91	26.1	18.8	1.31
5	(PLGA6- <i>b</i> -POEOA25)4 (PLGA 75:25)	150ª	5	67	52.6	26.9	1.30
6	(PLGA7- <i>b</i> -POEOA32)4 (PLGA 50:50)	147ª	5	87	65.7	33.4	1.20
7	Linear PLA ₂₂ -b-POEOA ₅₀	51	24	99	27.9	17.3	1.34
8	Linear PLGA ₂₇ -b-POEOA ₃₈ (PLGA 50:50)	52	6.5	74	22.2	13.7	1.32
9	Linear PLGA23-b-POEOA39 (PLGA 75:25)	51	6.5	77	22.3	11.0	1.31

^a[CuBr₂]₀/[Me₆TREN]₀= 0.48/0.96 (molar)

Figure S1. ¹H NMR spectra of 4-arm star PLGA-OH (a), 4-arm star PLGA-Br (b) and 4-arm star PLGA-*b*-POEOA (PLGA 50:50) BCP (c) in CDCl₃.

Figure S2. ¹H NMR spectra of linear PLGA-OH (a), linear PLGA-Br (b) and linear PLGA-*b*-POEOA (PLGA 50:50) BCP (c) in CDCl₃.

Figure S3. ¹H NMR spectra of linear PLA-OH (a), linear PLA-Br (b) and linear PLA-*b*-POEOA BCP (c) in CDCl₃.

The ATR-FTIR spectra in Figures S4, S5, S6 and S7 show the characteristic PLA and PLGA stretching vibration of the ester carbonyl at 1746 cm⁻¹, the OH stretching at 3516 cm⁻¹ and the C-O-C stretching at 1084 cm⁻¹.¹ The peak at 1453 cm⁻¹ corresponds to the vibration of methyl and the aliphatic C–H stretching is observed at 2873 cm⁻¹, which is attributed to the C–H bending vibrations.¹

Figure S4. ATR-FTIR spectra of 4-arm star PLA-OH, 4-arm star PLA-Br and 4-arm star PLA-*b*-POEOA BCP.

Figure S5. ATR-FTIR spectra of 4-arm star PLGA-OH, 4-arm star PLGA-Br and 4-arm star PLGA-*b*-POEOA BCP.

Figure S6. ATR-FTIR spectra of linear PLA-OH, linear PLA-Br and linear PLA-b-POEOA BCP.

Figure S7. ATR-FTIR spectra of linear PLGA-OH, linear PLGA-Br and linear PLGA-b-POEOA BCP.

Figure S8. TEM image of micelles formed by (PLA₅-*b*-POEOA₁₃)₄ BCP.

Figure S9. SEC traces (RI signal) of $(PLGA_6-b-POEOA_{12})_4$ (PLGA 50:50) BCP at different degradation times.

Figure S10. SEC traces (RI signal) of (PLA₅-*b*-POEOA₁₃)₄ BCP at different degradation times.

References

1. Eldessouki, M., Buschle-Diller, G., Gowayed, Y. *Des. Monomers Polym.*, 2016, **19**, 180–192.