Supporting Information

Aqueous seeded RAFT polymerization for the preparation of self-assemblies containing nucleobase analogues

Miriam Abad, ^{a,b} Martina Nardi, ^c Luis Oriol, ^{a,b} Milagros Piñol *^{a,b} and Eva Blasco *^{d,e}

Affiliations:

^a Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain. E-mail: mpinol@unizar.es

^b Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza 50009, Spain

^c Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany

^d Organic Chemistry Institute, University of Heidelberg, In Neuenheimer Feld 270, 69120, Germany. E-mail: eva.blasco@oci.uni-heidelberg.de

^e Institute for Molecular Systems Engineering and Advanced Materials, University of Heidelberg, In Neuenheimer Feld 225, 69120, Germany.

Table of contents

nDAP solubility tests	.S2
igure S1	.S2
igure S2	. S3
igure S3	. S3
igure S4	.S4
igure S5	.S5
igure S6	.S6
igure S7	.S6
igure S8	.S7
igure S9	.S7
igure S10	.S8
igure S11	.S8
igure S12	.S9
igure S13	.S9
igure S14S	510
igure S15S	510
-igure S16S	511
Fable S1 S	512

mDAP solubility tests.

The monomer (**mDAP**) solubility was tested in a range from 250 to 25 mg mL⁻¹, firstly in water, and then in mixtures water/dioxane (80:20 w/w), water/DMF (80:20 w/w), and water/ethanol (80:20 w/w). **mDAP** results insoluble in all of them for all the concentrations tested.

Fig. S1. (a) GPC chromatogram of **PEG**₁₂₄-**CTA** and **PEG**₁₂₄-**b**-**PDAP**₉-**CTA** recorded at 290 nm. (b) GPC chromatograms of **PEG**₁₂₄-**CTA** and **PEG**₁₂₄-**b**-**PDAP**₉-**CTA** recorded at different wavelengths (240 nm, 250 nm and 320 nm).

Fig. S2. ¹H NMR spectrum of PEG₁₂₄-CTA (CDCl₃, 400 MHz) δ (ppm).

Fig. S3. ¹H NMR spectrum of PEG_{124} -*b*-PDAP₉ (CDCl₃, 400 MHz) δ (ppm). In order to estimate PDAP degree of polymerization, the relative integration of proton signal at 3.37 ppm, corresponding to PEG block methyl terminal group (protons **a**) was compared to the one at 4.42-4.05 ppm, corresponding to DAP repeating unit (protons **f** and **g**).

Fig. S4. (a) Intensity and (b) number particle size distributions recorded by DLS measurements of PEG₁₂₄-*b*-PDAP₉-CTA + HPMA₁₀₀ and PEG₁₂₄-*b*-PDAP₉-CTA + HPMA₃₀₀ at polymerization temperature (50°C).

Fig. S5. ¹H NMR spectra (D₂O, 300 MHz) δ (ppm) recorded for (a) HPMA monomer (13 mg) dissolved in D₂O (0.7 mL), using DMF (5 μL) as internal standard and (b) a mixture of HPMA monomer (13 mg) and **PEG₁₂₄-b-PDAP₉-CTA** dissolved in D₂O (0.7 mL), using DMF (5 μL) as internal standard. Peak attenuation is observed for the HPMA vinyl signals in the presence of **PEG₁₂₄-b-PDAP₉-CTA** (compare insets) that HPMA preferentially is placed within **PEG₁₂₄-b**-**PDAP₉-CTA** self-assemblies rather than remaining in the aqueous phase.

Fig. S6. Representative ¹H-NMR spectra of PEG_{124} -*b*-PDAP₉-*b*-PHPMA_n BCs formed at c=25 (CD₃OD, 400 MHz) δ (ppm).

Fig. S7. GPC chromatograms recorded using a PDA detector at 290 nm, employing DMF (LiBr 50 mM) as eluent, of **PEG₁₂₄-b-PDAP₉-b-PHPMA**_n block copolymers polymerized at (a) 10, (b) 15, (c) 20 and (d) 25 g of polymer/100 mL of water.

Fig. S8. First row: Intensity particle size distributions recorded by DLS of PEG₁₂₄-b-PDAP₉-b-PHPMA_n self-assemblies dispersions: (a) spherical micelles, (b) worms and (c) unilamellar and oligolamellar vesicles. Second row: Number particle size distributions recorded by DLS of PEG₁₂₄-b-PDAP₉-b-PHPMA_n self-assemblies dispersions: (a) spherical micelles, (b) worms and (c) unilamellar and oligolamellar vesicles.

Fig. S9. TEM images of **PEG**₁₂₄-*b***-PDAP**₉-*b***-PHPMA**_n dispersions of series x=3 that show transition morphologies such as wormballs and coalesced wormballs (yellow arrows) and jellyfish (green arrow).

Fig. S10. Evolution of average size distributions over time for **PEG**₁₂₄-*b***-PDAP**₉-*b***-PHPMA**_n samples registered by DLS.

Fig. S11. TEM images of dispersions (a) 10-1 and (b) 15-1, taken 11 months after the aqueous seeded RAFT polymerization.

Fig. S12. (a) DLS measurements over time of worm-like dispersions. (b) TEM images of worm-like dispersions 12 weeks after polymerization.

Fig. S13. TEM images of (a) **PEG**₁₂₄-*b*-**PDAP**₉-**CTA**, (b) **PEG**₁₂₄-*b*-**PDAP**₉-**CTA** + **HPMA**₁₀₀, (c) **PEG**₁₂₄-*b*-**PDAP**₉-**CTA** + **T**₄ and (d) **PEG**₁₂₄-*b*-**PDAP**₉-**CTA** + **T**₄ + **HPMA**₁₀₀ self-assemblies in water.

Fig. S14. GPC chromatograms using DMF as eluent of $10-1 \cdot T_4$, 10-1, $PEG_{124}-b-PDAP_9-CTA$ and T_4 .

Fig. S15. DLS measurements of NR loaded and non-loading (a) **10-1** and (b) **10-1·T**₄ polymeric aggregates. TEM images of (c) **10-1+NR** and (d) **10-1·T**₄+NR polymeric self-assemblies.

Sample	Conversion	PHPMA degree of polymerization ^a	Average M _n	Hydrophilic/ hydrophobic ratio ^d	M _n (GPC) ^e	Đe
PEG ₁₂₄ -OH			5450 ^b			
PEG ₁₂₄ -CTA			5840 ^b	93/7	22605	1.07
PEG ₁₂₄ - <i>b</i> - PDAP ₉ -CTA	93%		9440 ^b	58/42	32910	1.18
10-1	>99%	115	26000°	21/79	53165	1.32
10-2	99%	214	40300 ^c	13/87	64840	1.42
10-3	98%	338	58200 °	9/91	72810	1.42
15-1	>99%	105	24600 °	22/78	55180	1.31
15-2	>99%	219	41000 ^c	13/87	73790	1.31
15-3	>99%	336	57900 °	9/91	83385	1.38
20-1	>99%	111	25500 °	21/79	50900	1.34
20-2	>99%	217	40700 ^c	13/87	66990	1.41
20-3	>99%	326	56500 °	10/90	71045	1.45
25-1	>99%	104	24500 °	22/78	54630	1.34
25-2	>99%	213	40200 ^c	14/86	71995	1.35
25-3	>99%	314	54700 ^c	10/90	78510	1.35
10-1·T ₄	98%	111	25400 ^c	21/79	45390	1.31

Table S1. Characterization data obtained from PEG₁₂₄-OH, PEG₁₂₄-CTA, PEG₁₂₄-b-PDAP₉-CTA, PEG₁₂₄b-PDAP₉-b-PHPMA_n and PEG₁₂₄-b-PDAP₉-b-PHPMA_n·T₄ polymers.

^aEstimated taking into account polymerization conversion. ^bAverage number molar mass (M_n) determined by ¹H-NMR spectroscopy. ^cAverage number molar mass (M_n) calculated taking into account the **PEG₁₂₄-b-PDAP₉-CTA** average M_n estimated by ¹H-NMR and the PHPMA degree of polymerization. ^dHydrophobic/hydrophilic weight percentage ratio estimated from M_n , considering the PEG block as the hydrophilic part and the rest of the polymer as the hydrophobic part. ^eRelative average number molar mass M_n , and dispersity (D) determined by GPC using DMF with 50 mM LiBr (0.5 mL min⁻¹) and PS standards calibration.