Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2022

# **Supporting Information**

# Variations around the presence and position of sulfur in sugar-derived cyclic monomers: influence on polymerisation thermodynamics, polymer sequence and thermal properties

Craig Hardy,<sup>a</sup> Gabriele Kociok-Köhn<sup>b</sup> and Antoine Buchard\*<sup>a</sup>

<sup>a</sup>Department of Chemistry, Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK.

<sup>b</sup>Materials and Chemical Characterisation Facility (MC2 ), University of Bath, Claverton Down, Bath, BA2 7AY, UK.

Email: a.buchard@bath.ac.uk

# Table of Contents

| Materials and MethodsS4 |                                                                                            |     |
|-------------------------|--------------------------------------------------------------------------------------------|-----|
| General Procedures      |                                                                                            |     |
| 1.                      | Monomer Synthesis and Characterisation                                                     | S6  |
|                         | Synthesis of (2R,3S)-3-acetoxy-3,6-dihydro-2H-pyran-2-yl)methyl acetate                    | S6  |
|                         | Synthesis of (2R,3S)-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-3-ol                           | S6  |
|                         | Synthesis of (2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol                             | S6  |
|                         | NMR analysis of (2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol                          | S7  |
|                         | Synthesis of ((2R,3S)-3-hydroxytetrahydro-2H-pyran-2-yl)methyl 4-methylbenzenesulfonate    | S9  |
|                         | NMR analysis of ((2R,3S)-3-hydroxytetrahydro-2H-pyran-2-yl)methyl 4-methylbenzenesulfonate | S10 |
|                         | Synthesis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiine-2-thione (2)                   | S12 |
|                         | NMR analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiine-2-thione (2)                | S13 |
|                         | DSC analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiine-2-thione (2)                | S15 |
|                         | TGA analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiine-2-thione (2)                | S16 |
|                         | FT-IR analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiine-2-thione (2)              | S16 |
|                         | Crystal Diffraction Data and Structure Refinement for <b>2</b> (CCDC Number – 2095960)     | S17 |
|                         | Synthesis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiin-2-one (3)                       | S19 |
|                         | NMR analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiin-2-one (3)                    | S19 |
|                         | DSC analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiin-2-one (3)                    | S21 |
|                         | TGA analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiin-2-one (3)                    | S22 |
|                         | FT-IR analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiin-2-one (3)                  | S22 |
|                         | Crystal Diffraction Data and Structure Refinement for <b>3</b> (CCDC Number – 2177255)     | S23 |
|                         | Synthesis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxine-2-thione (4)                     | S25 |
|                         | NMR analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxine-2-thione (4)                  | S25 |
|                         | DSC analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxine-2-thione (4)                  | S28 |
|                         | TGA analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxine-2-thione (4)                  | S28 |
|                         | FT-IR analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxine-2-thione (4)                | S29 |
|                         | Crystal Diffraction Data and Structure Refinement for 4 (CCDC Number – 2177256)            | S29 |
|                         | Synthesis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxin-2-one (5)                         | S31 |
|                         | NMR analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxin-2-one (5)                      | S31 |
|                         | DSC analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxin-2-one (5)                      | S34 |
|                         | TGA analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxin-2-one (5)                      | S34 |
|                         | FT-IR analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxin-2-one (5)                    | S35 |
|                         | Crystal Diffraction Data and Structure Refinement for 5 (CCDC Number – 2177257)            | S35 |
|                         | Synthesis of (4aS,8aS)-4,4a,6,8a-tetrahydropyrano[2,3-e][1,3]oxathiine-2-thione (1)        | S37 |
|                         | NMR analysis of (4aS,8aS)-4,4a,6,8a-tetrahydropyrano[2,3-e][1,3]oxathiine-2-thione (1)     | S37 |
|                         | DSC analysis of (4aS,8aS)-4,4a,6,8a-tetrahydropyrano[2,3-e][1,3]oxathiine-2-thione (1)     | S40 |
|                         | TGA analysis of (4aS,8aS)-4,4a,6,8a-tetrahydropyrano[2,3-e][1,3]oxathiine-2-thione (1)     | S40 |

|    | FT-IR analysis of (4aS,8aS)-4,4a,6,8a-tetrahydropyrano[2,3-e][1,3]oxathiine-2-thione (1) | S41 |
|----|------------------------------------------------------------------------------------------|-----|
|    | Crystal Diffraction Data and Structure Refinement for 1 (CCDC Number – 2089243)          | S41 |
| 2. | General Polymerisation Procedures                                                        | S43 |
|    | Ring opening polymerisation of <b>2</b>                                                  | S43 |
|    | NMR analysis of the polymer derived from 2                                               | S43 |
|    | Size-Exclusion Chromatography analysis of the polymer derived from 2                     | S46 |
|    | DSC analysis of the polymer derived from 2                                               | S47 |
|    | TGA analysis of the polymer derived from 2                                               | S49 |
|    | FT-IR analysis of the polymer derived from 2                                             | S50 |
|    | Influence of concentration on the ROP of <b>2</b>                                        | S50 |
|    | Determination of ROP thermodynamic parameters of <b>2</b>                                | S52 |
|    | Standardised entropy of polymerisation for different concentrations                      | S53 |
|    | NMR analysis of poly(2) after heating to 180 °C                                          | S53 |
|    | Size-Exclusion Chromatography analysis of poly(2) after heating to 180 °C                | S54 |
|    | Ring opening polymerisation of 3                                                         | S55 |
|    | NMR analysis of the polymer derived from <b>3</b>                                        | S56 |
|    | Size-Exclusion Chromatography analysis of the polymer derived from 3                     | S58 |
|    | DSC analysis of the polymer derived from 3                                               | S59 |
|    | TGA analysis of the polymer derived from <b>3</b>                                        | S60 |
|    | DMA analysis of the polymer derived from <b>3</b>                                        | S62 |
|    | FT-IR analysis of the polymer derived from <b>3</b>                                      | S64 |
|    | Ring opening polymerisation of 4                                                         | S65 |
|    | NMR analysis of the polymer derived from 4                                               | S65 |
|    | Size-Exclusion Chromatography analysis of the polymer derived from 4                     | S68 |
|    | DSC analysis of the polymer derived from 4                                               | S69 |
|    | TGA analysis of the polymer derived from 4                                               | S70 |
|    | FT-IR analysis of the polymer derived from <b>4</b>                                      | S71 |
|    | Ring opening polymerisation of 5                                                         | S72 |
|    | NMR analysis of the polymer derived from 5                                               | S72 |
|    | Size-Exclusion Chromatography analysis of the polymer derived from 5                     | S75 |
|    | DSC analysis of the polymer derived from 5                                               | S76 |
|    | TGA analysis of the polymer derived from 5                                               | S77 |
|    | FT-IR analysis of the polymer derived from 5                                             | S78 |
| 3. | DFT Computational Studies                                                                | S79 |
|    | DFT Modelling of the isodesmic ring opening for all monomers                             | S79 |
|    | Plots of $\Delta H^{ROP}$ versus monomer conversion                                      | S82 |
| 4. | Polymer Degradation                                                                      |     |
|    | UV degradation of poly(2)                                                                | S84 |

| Refer | Tences                    | 390 |
|-------|---------------------------|-----|
| Pofor | rences                    | can |
|       | UV degradation of poly(5) | S88 |
|       | UV degradation of poly(4) | S86 |
|       |                           | ~ ~ |

#### Materials and Methods

Unless otherwise stated, all starting materials and reagents were obtained from Sigma-Aldrich, Acros Organics or Alfa Aesar and used without further purification. All solvents were obtained from either Fisher Scientific or VWR Chemicals, except for anhydrous solvents, which were purchased from Sigma-Aldrich or Acros Organics and used without further purification. Tri-*O*-acetyl-D-glucal was purchased from Carbosynth. 4-Methylbenzyl alcohol was recrystallised from dry diethyl ether and stored in a glovebox under Argon prior to use and TBD was recrystallised from dry toluene and dried over CaH<sub>2</sub> prior to use by dissolution in dry THF. Where appropriate, the progress of reactions was monitored by thin layer chromatography using silica coated aluminium plates (Kieselgel 60G F254) purchased from VWR Chemicals and visualized using a potassium permanganate (KMnO4) stain. The purification of intermediates and final products was accomplished by flash column chromatography, using silica gel (Fluka, pore size 60 Å, 70-230 mesh, 63-200 µm), and the purity of the final compounds was determined by NMR spectroscopy.

**NMR spectra** were recorded on a Brucker 400 and 500 spectrometers operating at a frequencies of 400 MHz (<sup>1</sup>H) and 101 MHz (<sup>13</sup>C) and 500 MHz (<sup>1</sup>H) and 126 MHz (<sup>13</sup>C) respectively. The NMR spectra were recorded in CDCl<sub>3</sub>, relative to reference points of the deuterated solvent. Chemical shifts ( $\delta$ ) are quoted in ppm and coupling constants (*J*) are quoted in Hertz. Abbreviations used to describe the multiplicity of the peaks observed are defined as follows: s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets and so on.

**Size-exclusion chromatography (SEC)** was carried out using a THF or chloroform eluent. Multi analysis software was used to process the data. Polymer samples were dissolved at a concentration of 1 mg mL<sup>-1</sup>. Samples were recorded on an Agilent 1260 Infinity series instrument at 1 mL min<sup>-1</sup> at 35 °C using two PLgel 5  $\mu$ m MIXED-D 300 × 7.5 mm columns in series. Samples were detected with a differential refractive index (RI) detector. Number-average molecular weight ( $M_{n,SEC}$ ), and dispersities, ( $D_M$  ( $M_w/M_n$ )) were calculated against a polystyrene calibration (11 polystyrene standards of narrow molecular weight, ranging from  $M_w$  615–568000 Da).

**Differential scanning calorimetry (DSC)** was carried out using a MicroSC multicell calorimeter from Setaram; the Calisto program was employed to collect and process the data. The measurement cell and the reference cell were both a 1 mL Hastelloy C cell; a mass of 2–5 mg of polymeric material was loaded into the measurement cell with the reference cell empty. The experiments were performed under N<sub>2</sub> and the sample heated and cooled at a rate of 10 K min<sup>-1</sup> unless otherwise stated. A second heating and cooling cycle was carried out immediately following completion of the first, unless otherwise stated. Data was plotted using Origin 2018.

**Thermogravimetric analysis (TGA)** was carried out using a Setsys Evolution TGA 16/18 from Setaram; the Calisto program was employed to collect and process the data. The sample was loaded into a 170  $\mu$ L alumina crucible

and the analytical chamber purged with argon (200 mL min<sup>-1</sup>) for 20 minutes prior to starting the analysis. The sample was then heated under an argon flow (20 mL min<sup>-1</sup>) from 30 to 600 °C at a rate of 10 °C min<sup>-1</sup>, unless otherwise stated.

**FT-IR analysis** was carried out using a PerkinElmer Inc. Spectrum 100 FT-IR Spectrometer. Universal ATR enabling wavelengths from 650-4000 cm<sup>-1</sup> (15  $\mu$ m to 2.5  $\mu$ m).

**Single-Crystal X-ray Diffraction (XRD)** analysis was carried out by Dr Gabriele Kociok-Köhn at 150(2) K on a Rigaku Xcalibur, EosS2 single crystal diffractometer using graphite monochromated Mo-K $\alpha$  radiation ( $\lambda$  = 0.71073 Å), or on a Rigaku SuperNova, EosS2 single crystal diffractometer using graphite monochromated Cu-K $\alpha$  radiation ( $\lambda$  = 1.5418 Å). Unit cell determination, data collection and data reduction were performed using the CrysAlisPro software. The structure was solved with SHELXT and refined by a full-matrix least-squares procedure based on F2 (SHELXL-2018/3)7. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed onto calculated positions and refined using a riding model.

# **General Procedures**

## 1. Monomer Synthesis and Characterisation

#### Synthesis of (2R,3S)-3-acetoxy-3,6-dihydro-2H-pyran-2-yl)methyl acetate

(2R,3S)-3-acetoxy-3,6-dihydro-2H-pyran-2-yl)methyl acetate was synthesised according to the previously reported method, spectroscopic data was consistent with previous literature.<sup>1</sup>



δ<sub>H</sub> (400 MHz; chloroform-d): 5.93 (C<sup>3</sup>H, 1H, dddd, J<sub>HH</sub> = 10.3, 2.7, 2.7, 1.8 Hz), 5.74 (C<sup>2</sup>H, 1H, dddd, J<sub>HH</sub> = 10.3, 2.3, 2.3, 2.2 Hz), 5.28-5.19 (C<sup>4</sup>H, 1H, m), 4.23-4.18 (C<sup>1</sup>H, C<sup>6</sup>H, 3H, m), 4.16 (C<sup>6</sup>H, 1H, dd, J<sub>HH</sub> = 12.1, 5.9 Hz), 3.71 (C<sup>5</sup>H, 1H, ddd, J<sub>HH</sub> = 8.6, 5.9, 2.9 Hz), 2.08 (C<sup>7</sup>H, 3H, s), 2.06 (C<sup>7</sup>H, 3H, s) ppm; δ<sub>C</sub> (101 MHz; chloroform-d): 171.0 (C<sup>7</sup>), 170.4 (C<sup>7</sup>), 129.6 (C<sup>3</sup>), 124.3 (C<sup>2</sup>), 73.9 (C<sup>5</sup>), 65.4 (C<sup>4</sup>), 65.2 C<sup>1</sup>), 63.4 (C<sup>6</sup>), 21.2 (C<sup>8</sup>), 20.9 (C<sup>8</sup>) ppm.

#### Synthesis of (2R,3S)-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-3-ol

(2R,3S)-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-3-ol was synthesised according to the previously reported method, spectroscopic data was consistent with previous literature.<sup>1</sup>



 $\delta_{\text{H}}$  (400 MHz; chloroform-d): 5.91-5.74 (C<sup>2</sup>H, C<sup>3</sup>H, 2H, m), 4.24-4.12 (C<sup>1</sup>H, C<sup>4</sup>H, 3H, m), 3.89 (C<sup>6</sup>H, 1H, dd, *J*<sub>HH</sub> = 11.6, 3.8 Hz), 3.80 (C<sup>6</sup>H, 1H, dd, *J*<sub>HH</sub> = 11.6, 5.5 Hz), 3.34 (C<sup>5</sup>H, 1H, ddd, *J*<sub>HH</sub> = 8.1, 5.4, 3.9 Hz) ppm;  $\delta_{\text{C}}$  (101 MHz; chloroform-d): 128.8 (C<sup>3</sup>), 127.8 (C<sup>2</sup>), 78.8 (C<sup>5</sup>), 65.6 (C<sup>4</sup>), 64.2 (C<sup>1</sup>), 63.1 (C<sup>6</sup>) ppm.

#### Synthesis of (2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol

Pd/C (10 wt. % loading, 563 mg) was added to a solution of (2R,3S)-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-3ol (5.63 g, 43.3 mmol, 1.0 equiv.) in anhydrous methanol (100 mL) under argon. The atmosphere of the flask was then exchanged and the solution was saturated with H<sub>2</sub>. Under a continuous feed of gas, the reaction mixture was stirred at room temperature for 20 h. Once complete, the mixture was filtered through a pad of celite and concentrated under reduced pressure to afford a colourless oil, which was used directly in the next reaction without further purification (5.61 g, 98 %). Spectroscopic data was consistent with the literature.<sup>2</sup>



 $\delta_{\rm H}$  (400 MHz; chloroform-d): 3.89 (C<sup>1</sup>H, 1H, ddt,  $J_{\rm HH}$  = 11.3, 3.6, 1.8 Hz), 3.80 (C<sup>6</sup>H, 1H, dd,  $J_{\rm HH}$  = 11.7, 3.8 Hz), 3.75 (C<sup>6</sup>H, 1H, dd,  $J_{\rm HH}$  = 11.7, 4.8 Hz), 3.52 (C<sup>4</sup>H, 1H, ddd,  $J_{\rm HH}$  = 11.0, 9.2, 4.7 Hz), 3.38-3.31 (C<sup>1</sup>H, 1H, m), 3.10 (C<sup>5</sup>H, 1H, dt,  $J_{\rm HH}$  = 8.9, 4.3 Hz), 2.12-2.05 (C<sup>3</sup>H, 1H, m), 1.73-1.57 (C<sup>2</sup>H, 2H, m), 1.49-1.34 (C<sup>3</sup>H, 1H, m) ppm;  $\delta_{\rm C}$  (101 MHz; chloroform-d): 82.0 (C<sup>5</sup>), 67.8 (C<sup>1</sup>), 67.3 (C<sup>4</sup>), 63.2 (C<sup>6</sup>), 32.5 (C<sup>3</sup>), 25.5 (C<sup>2</sup>) ppm.

# NMR analysis of (2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol

# 



Fig. S1 Annotated <sup>1</sup>H NMR spectrum of (2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol in chloroform-d.



Fig. S2 Annotated <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of (2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol in chloroform-d.



Fig. S3 COSY (<sup>1</sup>H–<sup>1</sup>H) NMR spectrum of (2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol in chloroform-d.



Fig. S4 HSQC (<sup>1</sup>H–<sup>13</sup>C) NMR spectrum of (2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol in chloroform-d.

#### Synthesis of ((2R,3S)-3-hydroxytetrahydro-2H-pyran-2-yl)methyl 4-methylbenzenesulfonate

(2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol (5.28 g, 40.7 mmol, 1.0 equiv.) was dissolved in anhydrous pyridine (42.3 mL) and treated imminently with toluenesulfonyl chloride (7.74 g, 40.7 mmol, 1.0 equiv.) under argon. The reaction mixture was then stirred at room temperature for 20 h. Once complete, DCM (100 mL) and water (100 mL) were added to the reaction mixture. The organic phase was separated from the aqueous phase, dried with MgSO<sub>4</sub> and concentrated in *vacuo*. The crude was taken up in DCM (100 mL) and washed with HCl<sub>(aq)</sub> (ca. 3%, 2 x 25 mL), NaHCO<sub>3</sub> (1 mol dm<sup>-3</sup>, 50 mL) and water (50 mL), dried over MgSO<sub>4</sub> and concentrated in *vacuo* to yield an off-white solid, which was used directly in the next reaction without further purification (8.21 g, 70 %).



 $\delta_{H}$  (400 MHz; chloroform-d): 7.80 (C<sup>7</sup>H, 2H, d, J<sub>HH</sub> = 8.3 Hz), 7.34 (C<sup>8</sup>H, 2H, d, J<sub>HH</sub> = 7.9 Hz), 4.34 (C<sup>6</sup>H, 1H, dd, J<sub>HH</sub> = 11.0, 4.5 Hz), 4.20 (C<sup>6</sup>H, 1H, dd, J<sub>HH</sub> = 11.0, 2.4 Hz), 3.91-3.85 (C<sup>1</sup>H, 1H, m), 3.56 (C<sup>4</sup>H, 1H, ddd, J<sub>HH</sub> = 14.4, 10.7, 5.1 Hz), 3.33-3.25 (C<sup>1</sup>H, 1H, m), 3.23-3.18 (C<sup>5</sup>H, 1H, m), 2.44 (C<sup>9</sup>H, 3H, s), 2.16-2.09 (C<sup>3</sup>H, 1H, m), 1.71-1.61 (C<sup>2</sup>H, 1H, m), 1.48-1.36 (C<sup>3</sup>H, 1H, m) ppm;  $\delta_{C}$  (101 MHz; chloroform-d): 145.1 (C<sup>10</sup>), 133.0 (C<sup>7</sup>), 130.0 (C<sup>9</sup>), 128.1 (C<sup>8</sup>), 80.3 (C<sup>5</sup>), 69.9 (C<sup>6</sup>), 68.0 (C<sup>1</sup>), 66.0 (C<sup>4</sup>), 32.5 (C<sup>2</sup>), 25.3 (C<sup>3</sup>), 21.8 (C<sup>11</sup>) ppm.

NMR analysis of ((2R,3S)-3-hydroxytetrahydro-2H-pyran-2-yl)methyl 4-methylbenzenesulfonate



**Fig. S5** Annotated <sup>1</sup>H NMR spectrum of ((2R,3S)-3-hydroxytetrahydro-2H-pyran-2-yl)methyl 4-methylbenzenesulfonate in chloroform-d.



**Fig. S6** Annotated <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of ((2R,3S)-3-hydroxytetrahydro-2H-pyran-2-yl)methyl 4-methylbenzenesulfonate in chloroform-d.



**Fig. S7** <sup>13</sup>C{<sup>1</sup>H} DEPT135 NMR spectrum of ((2R,3S)-3-hydroxytetrahydro-2H-pyran-2-yl)methyl 4-methylbenzenesulfonate in chloroform-d.



**Fig. S8** COSY (<sup>1</sup>H–<sup>1</sup>H) NMR spectrum of ((2R,3S)-3-hydroxytetrahydro-2H-pyran-2-yl)methyl 4-methylbenzenesulfonate in chloroform-d.



**Fig. S9** HSQC (<sup>1</sup>H–<sup>13</sup>C) NMR spectrum of ((2R,3S)-3-hydroxytetrahydro-2H-pyran-2-yl)methyl 4-methylbenzenesulfonate in chloroform-d.

#### Synthesis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiine-2-thione (2)

A 0.5 mol L<sup>-1</sup> solution of ((2R,3S)-3-hydroxytetrahydro-2H-pyran-2-yl)methyl 4-methylbenzenesulfonate (10.2 g, 35.3 mmol, 1.0 equiv.) in dry THF (70.7 mL) was treated dropwise with a solution of 1 mol L<sup>-1</sup> potassium tertbutoxide (35.3 mL, 35.3 mmol, 1.0 equiv.) in anhydrous THF at 0 °C under argon. Carbon disulphide (4.27 mL, 70.7 mmol, 2.0 equiv.) was then added dropwise to the reaction mixture and stirred at 0 °C for 3 h. Once complete, Et<sub>2</sub>O (100 mL) was added and the reaction mixture was filtered through a celite pad and concentrated in *vacuo* to yield a murky yellow precipitate. The crude product was purified *via* flash column chromatography on SiO<sub>2</sub> using a DCM mobile phase, the filtrate was concentrated in *vacuo* to yield small yellow crystals (5.24 g, 78 %). The product was purified further by recrystallization using absolute ethanol, and isolated *via* filtration as pale-yellow crystals.



δ<sub>H</sub> (400 MHz; chloroform-d): 4.21-4.11 (C<sup>4</sup>H, 2H, m), 4.01-3.95 (C<sup>1</sup>H, 1H, m), 3.69 (C<sup>5</sup>H, 1H, ddd, J<sub>HH</sub> = 10.0, 9.2, 5.7 Hz), 3.51-3.43 (C<sup>1</sup>H, 1H, m), 3.08 (C<sup>6</sup>H, 1H, dd, J<sub>HH</sub> = 11.3, 10.0 Hz), 3.02 (C<sup>6</sup>H, 1H, dd, J<sub>HH</sub> = 11.3, 5.7 Hz), 2.45-2.37 (C<sup>3</sup>H, 1H, m), 1.86-1.73 (C<sup>2</sup>H, C<sup>3</sup>H, 3H, m) ppm; δ<sub>C</sub> (101 MHz; chloroform-d): 207.5 (C<sup>7</sup>), 81.0 (C<sup>4</sup>), 71.0 (C<sup>5</sup>), 68.0 (C<sup>1</sup>), 34.4 (C<sup>6</sup>), 29.0 (C<sup>3</sup>), 24.9 (C<sup>2</sup>) ppm. v<sub>max</sub> (cm<sup>-1</sup>): 2962-2947 (CH), 1250-1173 (C(S)SO), 1050 (C–S).

## NMR analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiine-2-thione (2)



14.19
14.19
14.19
14.17
14.16
14.17
14.16
14.17
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14.16
14

Fig. S10 Annotated <sup>1</sup>H NMR spectrum of 2 in chloroform-d.



Fig. S11 Annotated  ${}^{13}C{}^{1}H$  NMR spectrum of 2 in chloroform-d.



Fig. S12 COSY (<sup>1</sup>H–<sup>1</sup>H) NMR spectrum of 2 in chloroform-d.



Fig. S13 HSQC (<sup>1</sup>H–<sup>13</sup>C) NMR spectrum of 2 in chloroform-d.



Fig. S14 <sup>13</sup>C{<sup>1</sup>H} DEPT135 NMR spectrum of 2 in chloroform-d.

DSC analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiine-2-thione (2)



Fig. S15 DSC trace of the monomer 2, first heating and cooling cycle between 0 and 180 °C. Single exothermic peak, corresponding to the melting temperature ( $T_m$ )  $\approx$  110 °C of the monomer. Single endothermic peak, corresponding to the recrystallisation temperature ( $T_{recryst}$ )  $\approx$  80 °C of the monomer.

TGA analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiine-2-thione (2)



**Fig. S16** TGA trace of the monomer **2**. The monomer was heated from 0 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values:  $T_{d5\%}$  = 191 °C;  $T_{d,max}$  = 260 °C with 1 % char remaining at 600 °C.

FT-IR analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiine-2-thione (2)



Fig. S17 Labelled FT-IR spectrum of 2.

## Crystal Diffraction Data and Structure Refinement for 2 (CCDC Number – 2095960)



**Fig. S18** ORTEP drawing of the crystal structure of **2** with thermal ellipsoids at the 50% probability level. Selected bond lengths and dihedral angles (°): S(1)–C(7) 1.655 (2), S(2)–C(7) 1.726 (2), S(2)–C(6) 1.810 (2), O(1)–C(7) 1.324 (2), O(2)–C(1) 1.464 (2), C(2)–C(3) 1.509 (3), C(7)–S(2)–C(6) 105.34 (9), C(7)–O(1)–C(4) 123.46 (16), O(1)–C(7)–S(1) 118.56 (15), O(1)–C(7)–S(2) 123.92 (15), S(1)–C(7)–S(2) 117.49 (12), C(5)–C(6)–S(2) 110.44 (16).

| Identification code             | s21ab1                                |                                |
|---------------------------------|---------------------------------------|--------------------------------|
| Empirical formula               | C7 H10 O2 S2                          |                                |
| Formula weight                  | 190.27                                |                                |
| Temperature                     | 150.00(10) K                          |                                |
| Wavelength                      | 1.54184 Å                             |                                |
| Crystal system                  | Monoclinic                            |                                |
| Space group                     | P21                                   |                                |
| Unit cell dimensions            | a = 6.33251(11) Å                     | α = 90°.                       |
|                                 | b = 7.69444(17) Å                     | $\beta = 96.8866(17)^{\circ}.$ |
|                                 | c = 8.95591(16) Å                     | γ = 90°.                       |
| Volume                          | 433.229(15) Å <sup>3</sup>            |                                |
| Z                               | 2                                     |                                |
| Density (calculated)            | 1.459 Mg/m <sup>3</sup>               |                                |
| Absorption coefficient          | 5.163 mm <sup>-1</sup>                |                                |
| F(000)                          | 200                                   |                                |
| Crystal size                    | 0.503 x 0.394 x 0.107 mm <sup>3</sup> |                                |
| Theta range for data collection | 4.974 to 73.426°.                     |                                |
| Index ranges                    | -7<=h<=7, -9<=k<=7, -11<=l<=11        |                                |
| Reflections collected           | 6162                                  |                                |
| Independent reflections         | 1504 [R(int) = 0.0243]                |                                |
| Completeness to theta = 67.684° | 99.9 %                                |                                |
| Absorption correction           | Gaussian                              |                                |
| Max. and min. transmission      | 1.000 and 0.136                       |                                |

| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
|-----------------------------------|---------------------------------------------|
| Data / restraints / parameters    | 1504 / 1 / 100                              |
| Goodness-of-fit on F <sup>2</sup> | 1.065                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0281, wR2 = 0.0738                   |
| R indices (all data)              | R1 = 0.0281, wR2 = 0.0738                   |
| Absolute structure parameter      | 0.014(17)                                   |
| Extinction coefficient            | n/a                                         |
| Largest diff. peak and hole       | 0.353 and -0.330 e.Å <sup>-3</sup>          |

#### Synthesis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiin-2-one (3)

A stream of ozone diluted in oxygen was bubbled through a 0.1 mol L<sup>-1</sup> solution of **2** (1.0 g, 5.74 mmol, 1.0 equiv.) in dry DCM (57.4 mL) at -78 °C for several minutes. The solution turned a blue after several minutes, due to ozone saturation. The ozone generator was turned off and oxygen was allowed to pass through the solution for a few minutes to flush out any remaining ozone. Once complete, the solvent was removed from the reaction mixture in *vacuo* to yield an off-white solid. The crude product was purified *via* column chromatography on SiO<sub>2</sub> using a hexane:EtOAc (4:1) mobile phase, all fractions containing the product were combined and concentrated in *vacuo* to yield a fluffy white powder (0.66 g, 72 %).



 $\delta_{\rm H}$  (500 MHz; chloroform-d): 4.13 (C<sup>4</sup>H, 1H, ddd, J<sub>HH</sub> = 10.5, 9.2, 5.0 Hz), 3.98-3.93 (C<sup>1</sup>H, 1H, m), 3.60 (C<sup>5</sup>H, 1H, ddd, J<sub>HH</sub> = 9.7, 9.7, 5.6 Hz), 3.44 (C<sup>1</sup>H, 1H, ddd, J<sub>HH</sub> = 11.3, 11.3, 3.4 Hz), 3.15-3.03 (C<sup>6</sup>H, 2H, m), 2.29-2.23 (C<sup>2</sup>H, 1H, m), 1.81-1.62 (C<sup>2</sup>H, C<sup>3</sup>H, 3H, m) ppm;  $\delta_{\rm C}$  (126 MHz; chloroform-d): 165.7 (C<sup>7</sup>), 79.3 (C<sup>4</sup>), 72.8 (C<sup>5</sup>), 69.0 (C<sup>1</sup>), 32.1 (C<sup>6</sup>), 30.4 (C<sup>3</sup>), 25.6 (C<sup>2</sup>) ppm. v<sub>max</sub> (cm<sup>-1</sup>): 2954-2868 (CH), 1671 (C(O)SO), 1149-1017 (C–O), 1149-1017 (C–S).









Fig. S21 COSY ( $^{1}H-^{1}H$ ) NMR spectrum of 3 in chloroform-d.



Fig. S22 HSQC (<sup>1</sup>H–<sup>13</sup>C) NMR spectrum of 3 in chloroform-d.

DSC analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiin-2-one (3)



**Fig. S23** DSC trace of the monomer **3**, first heating and cooling cycle between 0 and 180 °C. Single exothermic peak, corresponding to the melting temperature ( $T_m$ )  $\approx$  122 °C of the monomer. Single endothermic peak, corresponding to the recrystallisation temperature ( $T_{recryst}$ )  $\approx$  57 °C of the monomer.

#### TGA analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiin-2-one (3)



**Fig. S24** TGA trace of the monomer **3**. The monomer was heated from 0 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values:  $T_{d5\%}$  = 150 °C;  $T_{d,max}$  = 219 °C with 1 % char remaining at 600 °C.

FT-IR analysis of (4aS,8aS)-hexahydropyrano[2,3-e][1,3]oxathiin-2-one (3)



Fig. S25 Labelled FT-IR spectrum of 3.

## Crystal Diffraction Data and Structure Refinement for 3 (CCDC Number – 2177255)



**Fig. S26** ORTEP drawing of the crystal structure of **3** with thermal ellipsoids at the 50% probability level. Selected bond lengths and dihedral angles (°): S–C(7) 1.761 (16), S–C(6) 1.812 (16), O(1)–C(7) 1.207 (19), O(2)–C(7) 1.335 (18), O(2)–C(4) 1.452 (18), C(6)–C(5) 1.513 (19), C(7)–S–C(6) 105.90 (7), C(7)–O(2)–C(5) 122.40 (11), O(1)–C(7)–S 119.53 (14), O(1)–C(7)–O(2) 119.53 (14), O(1)–C(7)–S 117.93 (17), O(2)–C(7)–S 122.46 (11).

| Identification code             | e22ab1                                |          |  |
|---------------------------------|---------------------------------------|----------|--|
| Empirical formula               | C7 H10 O3 S                           |          |  |
| Formula weight                  | 174.21                                |          |  |
| Temperature                     | 149.9(6) K                            |          |  |
| Wavelength                      | 0.71073 Å                             |          |  |
| Crystal system                  | Orthorhombic                          |          |  |
| Space group                     | P212121                               |          |  |
| Unit cell dimensions            | a = 6.0382(2) Å                       | α = 90°. |  |
|                                 | b = 6.9857(2) Å                       | β = 90°. |  |
|                                 | c = 18.8158(6) Å                      | γ = 90°. |  |
| Volume                          | 793.67(4) Å <sup>3</sup>              |          |  |
| Z                               | 4                                     |          |  |
| Density (calculated)            | 1.458 Mg/m <sup>3</sup>               |          |  |
| Absorption coefficient          | 0.361 mm <sup>-1</sup>                |          |  |
| F(000)                          | 368                                   |          |  |
| Crystal size                    | 0.696 x 0.550 x 0.448 mm <sup>3</sup> |          |  |
| Theta range for data collection | 3.111 to 30.232°.                     |          |  |
| Index ranges                    | -7<=h<=8, -9<=k<=9, -24<=l<=25        |          |  |
| Reflections collected           | 13165                                 |          |  |
| Independent reflections         | 2192 [R(int) = 0.0200]                |          |  |
| Completeness to theta = 25.242° | 99.9 %                                |          |  |
| Absorption correction           | Semi-empirical from equivalents       |          |  |
| Max. and min. transmission      | 1.00000 and 0.92518                   |          |  |
|                                 |                                       |          |  |

| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
|-----------------------------------|---------------------------------------------|
| Data / restraints / parameters    | 2192 / 0 / 100                              |
| Goodness-of-fit on F <sup>2</sup> | 1.087                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0242, wR2 = 0.0643                   |
| R indices (all data)              | R1 = 0.0248, wR2 = 0.0648                   |
| Absolute structure parameter      | 0.041(15)                                   |
| Extinction coefficient            | n/a                                         |
| Largest diff. peak and hole       | 0.212 and -0.232 e.Å <sup>-3</sup>          |

#### Synthesis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxine-2-thione (4)

An excess of 1,1'-thiocarbonyldiimidazole (TCDI) (1.48 g, 8.32 mmol, 1.1 equiv.) was added gradually, over the course of 1 h, to a solution of (2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol (1.0 g, 7.57 mmol, 1.0 equiv.) in dry DCM (30 mL) at 0 °C. The reaction mixture was then warmed to room temperature and stirred for a further 1.5 h. The reaction progress was monitored by thin layer chromatography using an EtOAc (100 %) mobile phase. After completion, the reaction mixture was immediately washed with  $HCl_{(aq)}$  (ca. 3%, 30 mL) and  $NaHCO_3$  (1 mol  $L^{-1}$ , 30 mL), dried over MgSO<sub>4</sub> and concentrated in *vacuo* to yield a white powder (0.90 g, 68 %). The product was purified further by recrystallization using absolute ethanol, and isolated *via* filtration as white crystals.



 $\delta_{\rm H}$  (500 MHz; chloroform-d): 4.51 (C<sup>6</sup>H, 1H, dd, J<sub>HH</sub> = 10.5, 6.0 Hz), 4.15 (C<sup>6</sup>H, 1H, t, J<sub>HH</sub> = 10.4 Hz), 4.08 (C<sup>4</sup>H, 1H, ddd, J<sub>HH</sub> = 11.2, 9.5, 4.7 Hz), 3.98-3.90 (C<sup>1</sup>H, 1H, m), 3.60 (C<sup>5</sup>H, 1H, ddd, J<sub>HH</sub> = 9.9, 9.8, 6.0 Hz), 3.47 (C<sup>1</sup>H, 1H, ddd, J<sub>HH</sub> = 11.5, 11.5, 3.4 Hz), 2.33-2.26 (C<sup>3</sup>H, 1H, m), 1.84-1.72 (C<sup>2</sup>H, 2H, m), 1.72-1.62 (C<sup>3</sup>H, 1H, m) ppm;  $\delta_{\rm C}$  (126 MHz; chloroform-d): 189.2 (C<sup>7</sup>), 77.6 (C<sup>4</sup>), 71.7 (C<sup>6</sup>), 69.6 (C<sup>5</sup>), 67.9 (C<sup>6</sup>), 27.5 (C<sup>3</sup>), 24.5 (C<sup>2</sup>) ppm. v<sub>max</sub> (cm<sup>-1</sup>): 2955-2875 (CH), 1256-1188 (C(S)O<sub>2</sub>), 1016 (C–O).





#### 





Fig. S28 Annotated <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 4 in chloroform-d.



Fig. S29 COSY (1H-1H) NMR spectrum of 4 in chloroform-d.



Fig. S31  $^{13}C\{^{1}H\}$  DEPT135 NMR spectrum of 4 in chloroform-d.

#### DSC analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxine-2-thione (4)



**Fig. S32** DSC trace of the monomer **4**, first heating and cooling cycle between 0 and 180 °C. Single exothermic peak, corresponding to the melting temperature ( $T_m$ )  $\approx$  92 °C of the monomer.





**Fig. S33** TGA trace of the monomer **4**. The monomer was heated from 0 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values:  $T_{d5\%}$  = 190 °C;  $T_{d,max}$  = 240 °C with 4 % char remaining at 600 °C.





Fig. S34 Labelled FT-IR spectrum of 4.

# Crystal Diffraction Data and Structure Refinement for 4 (CCDC Number – 2177256)



**Fig. S35** ORTEP drawing of the crystal structure of **4** with thermal ellipsoids at the 50% probability level. Selected bond lengths and dihedral angles (°): S–C(7) 1.649 (2), O(1)–C(7) 1.327 (2), O(1)–C(6) 1.462 (3), O(2)–C(7) 1.324 (2), O(2)–C(4) 1.464 (2), C(6)–C(5) 1.505 (3), C(7)–S–C(6) 105.90 (7), C(7)–O(1)–C(6) 123.57 (15), C(7)–O(2)–C(4) 120.38 (14), O(2)–C(7)–O(1) 120.50 (17), O(2)–C(7)–S(1) 119.93 (14), O(1)–C(7)–S(1) 119.57 (14), O(1)–C(6)–C(5) 110.34 (16).

| Identification code  |
|----------------------|
| Empirical formula    |
| Formula weight       |
| Temperature          |
| Wavelength           |
| Crystal system       |
| Space group          |
| Unit cell dimensions |
|                      |

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on  $F^2$ Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

e22ab3 C7 H10 O3 S 174.21 149.9(6) K 0.71073 Å Monoclinic 12 a = 12.5990(3) Å α = 90°. b = 6.90114(15) Å  $\beta = 102.949(3)^{\circ}.$ c = 18.8705(5) Å γ = 90°. 1599.02(7) Å<sup>3</sup> 8 1.447 Mg/m<sup>3</sup> 0.358 mm<sup>-1</sup> 736 0.700 x 0.550 x 0.400 mm<sup>3</sup> 3.153 to 27.483°. -16<=h<=16, -8<=k<=8, -24<=l<=24 12814 3659 [R(int) = 0.0244] 99.8 % Semi-empirical from equivalents 1.00000 and 0.94340 Full-matrix least-squares on F<sup>2</sup> 3659 / 1 / 199 1.060 R1 = 0.0255, wR2 = 0.0603 R1 = 0.0264, wR2 = 0.0608 0.00(2) n/a

0.205 and -0.172 e.Å<sup>-3</sup>

#### Synthesis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxin-2-one (5)

An excess of 1,1'-carbonyldiimidazole (CDI) (1.35 g, 8.32 mmol, 1.1 equiv.) was added gradually, over the course of 1 h, to a solution of (2R,3S)-2-(hydroxymethyl)tetrahydro-2H-pyran-3-ol (1.0 g, 7.57 mmol, 1.0 equiv.) in dry DCM (30 mL) at 0 °C. The reaction mixture was then warmed to room temperature and stirred for a further 1.5 h. The reaction progress was monitored by thin layer chromatography using an EtOAc (100 %) mobile phase. After completion, the reaction mixture was immediately washed with  $HCl_{(aq)}$  (ca. 3%, 30 mL) and  $NaHCO_3$  (1 mol  $L^{-1}$ , 30 mL), dried over MgSO<sub>4</sub> and concentrated in *vacuo* to yield a white powder (0.78 g, 65 %). The product was purified further by recrystallization using diethyl ether, and isolated *via* filtration as white crystals.



 $\delta_{\text{H}}$  (500 MHz; chloroform-d): 4.46 (C<sup>6</sup>H, 1H, dd, J<sub>HH</sub> = 10.1, 5.9 Hz), 4.15 (C<sup>6</sup>H, 1H, t, J<sub>HH</sub> = 10.2 Hz), 4.06 (C<sup>4</sup>H, 1H, ddd, J<sub>HH</sub> = 11.2, 9.5, 4.6 Hz), 4.02-3.97 (C<sup>1</sup>H, 1H, m), 3.54 (C<sup>5</sup>H, 1H, ddd, J<sub>HH</sub> = 10.1, 10.1, 5.9 Hz), 3.49 (C<sup>1</sup>H, 1H, ddd, J<sub>HH</sub> = 11.8, 11.8, 3.5 Hz), 2.30-2.24 (C<sup>3</sup>H, 1H, m), 1.85-1.70 (C<sup>2</sup>H, 2H, m), 1.69-1.58 (C<sup>3</sup>H, 1H, m) ppm;  $\delta_{\text{C}}$  (126 MHz; chloroform-d): 148.1 (C<sup>7</sup>), 76.1 (C<sup>4</sup>), 70.2 (C<sup>5</sup>), 69.9 (C<sup>6</sup>), 68.0 (C<sup>6</sup>), 28.2 (C<sup>3</sup>), 24.3 (C<sup>2</sup>) ppm. v<sub>max</sub> (cm<sup>-1</sup>): 2964-2877 (CH), 1729 (C(O)O<sub>2</sub>), 1091 (C–O).









Fig. S37 Annotated  $^{13}\text{C}\{^{1}\text{H}\}$  NMR spectrum of 5 in chloroform-d.



Fig. S38 COSY (<sup>1</sup>H–<sup>1</sup>H) NMR spectrum of 5 in chloroform-d.





Fig. S40  $^{13}\text{C}\{^{1}\text{H}\}$  DEPT135 NMR spectrum of 5 in chloroform-d.

#### DSC analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxin-2-one (5)



**Fig. S41** DSC trace of the monomer **5**, first heating and cooling cycle between 0 and 180 °C. Single exothermic peak, corresponding to the melting temperature ( $T_m$ )  $\approx$  88 °C of the monomer. Single endothermic peak, corresponding to the recrystallisation temperature ( $T_{recryst}$ )  $\approx$  20 °C of the monomer.





**Fig. S42** TGA trace of the monomer **5**. The monomer was heated from 0 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values:  $T_{d5\%}$  = 160 °C;  $T_{d,max}$  = 222 °C with 2 % char remaining at 600 °C.



FT-IR analysis of (4aR,8aS)-hexahydropyrano[3,2-d][1,3]dioxin-2-one (5)

Fig. S43 Labelled FT-IR spectrum of 5.

#### Crystal Diffraction Data and Structure Refinement for 5 (CCDC Number - 2177257)



**Fig. S44** ORTEP drawing of the crystal structure of **5** with thermal ellipsoids at the 50% probability level. Selected bond lengths and dihedral angles (°): O(1)–C(7) 1.204 (2), O(2)–C(7) 1.333 (2), O(2)–C(6) 1.456 (2), O(3)–C(7) 1.336 (19), O(3)–C(4) 1.454 (18), C(6)–C(5) 1.503 (2), C(7)–O(2)–C(6) 123.87 (14), C(7)–O(3)–C(4) 119.57 (12), O(1)–C(7)–O(2) 119.72 (15), O(1)–C(7)–O(3) 120.18 (16), O(2)–C(7)–O(3) 120.08 (15), O(2)–C(6)–C(5) 120.19 (14)

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges **Reflections collected** Independent reflections Completeness to theta = 67.684° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on  $\mathsf{F}^2$ Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

s22ab1 C7 H10 O4 158.15 150.00(10) K 1.54184 Å Monoclinic P21 a = 8.79278(12) Å α = 90°. b = 6.11294(9) Å  $\beta = 90.4175(12)^{\circ}$ . c = 13.39685(18) Å γ = 90°. 720.058(17) Å<sup>3</sup> 4 1.459 Mg/m<sup>3</sup> 1.029 mm<sup>-1</sup> 336 0.320 x 0.250 x 0.050 mm<sup>3</sup> 5.030 to 72.888°. -10<=h<=10, -7<=k<=7, -16<=l<=16 11144 2780 [R(int) = 0.0213] 99.9 % Semi-empirical from equivalents 1.00000 and 0.67311 Full-matrix least-squares on F<sup>2</sup> 2780 / 1 / 199 1.075 R1 = 0.0258, wR2 = 0.0668 R1 = 0.0261, wR2 = 0.0671 -0.03(5) n/a

0.194 and -0.179 e.Å<sup>-3</sup>
# Synthesis of (4aS,8aS)-4,4a,6,8a-tetrahydropyrano[2,3-e][1,3]oxathiine-2-thione (1)

**1** was synthesised according to the previously reported method, spectroscopic data shown is consistent with previous literature.<sup>1</sup>



 $\delta_{\rm H}$  (400 MHz; chloroform-d): 6.07-5.9 (C<sup>2</sup>H, C<sup>3</sup>H, 2H, m), 4.82-4.75 (C<sup>4</sup>H, 1H, m), 4.36-4.30 (C<sup>1</sup>H, 1H, m), 4.30-4.24 (C<sup>1</sup>H, 1H, m), 3.89 (C<sup>5</sup>H, 1H, ddd,  $J_{\rm HH}$  = 10.1, 8.4, 6.2 Hz), 3.18-3.10 (C<sup>6</sup>H, 2H, m) ppm;  $\delta_{\rm C}$  (101 MHz; chloroform-d): 207.6 (C<sup>7</sup>), 130.4 (C<sup>2</sup>), 122.8 (C<sup>3</sup>), 77.8 (C<sup>4</sup>), 68.4 (C<sup>5</sup>), 66.2 (C<sup>1</sup>), 35.0 (C<sup>6</sup>) ppm.  $\nu_{\rm max}$  (cm<sup>-1</sup>): 2895-2820 (CH), 1180 (C(S)SO), 1010 (C–S).





Fig. S45 Annotated <sup>1</sup>H NMR spectrum of **1** in chloroform-d.



Fig. S46 Annotated  ${}^{13}C{}^{1}H$  NMR spectrum of 1 in chloroform-d.



**Fig. S47** COSY ( $^{1}H-^{1}H$ ) NMR spectrum of **1** in chloroform-d.



**Fig. S48** HSQC ( $^{1}H-^{13}C$ ) NMR spectrum of **1** in chloroform-d.



Fig. S49 <sup>13</sup>C{<sup>1</sup>H} DEPT135 NMR spectrum of 1 in chloroform-d.

DSC analysis of (4aS,8aS)-4,4a,6,8a-tetrahydropyrano[2,3-e][1,3]oxathiine-2-thione (1)



**Fig. S50** DSC trace of monomer **1**, first heating and cooling cycle between 0 and 180 °C. Single exothermic peak, corresponding to the melting temperature ( $T_m$ )  $\approx$  122 °C of the monomer. Single endothermic peak, corresponding to the recrystallisation temperature ( $T_{recryst}$ )  $\approx$  64 °C of the monomer.





**Fig. S51** TGA trace of monomer **1**. The monomer was heated from 30 to 700 °C under argon at 10 °C min<sup>-1</sup>. Obtained values:  $T_{d5\%} = 183$  °C and  $T_{d,max} = 259$  °C with 9 % char remaining at 700 °C.



Fig. S52 Labelled FT-IR spectrum of 1.

#### Crystal Diffraction Data and Structure Refinement for 1 (CCDC Number - 2089243)



**Fig. S53** ORTEP drawing of the crystal structure of **1** with thermal ellipsoids at the 50% probability level. Selected bond lengths and dihedral angles (°): S(1)–C(7) 1.646 (2), S(2)–C(7) 1.733 (2), S(2)–C(6) 1.819 (2), O(1)–C(7) 1.333 (2), O(1)–C(4) 1.458 (3), C(7) –S(2)–C(6) 106.63 (10), C(7)–O(1)–C(4) 120.23 (16), O(1)–C(7)–S(1) 119.06 (15), O(1)–C(7)–S(2) 122.85 (15), S(1)–C(7)–S(2) 118.08 (12).

| Identification code | e20ab1      |
|---------------------|-------------|
| Empirical formula   | C7 H8 O2 S2 |
| Formula weight      | 188.25      |

| Temperature                       | 150.00(10) K                                |          |  |  |
|-----------------------------------|---------------------------------------------|----------|--|--|
| Wavelength                        | 0.71073 Å                                   |          |  |  |
| Crystal system                    | Orthorhombic                                |          |  |  |
| Space group                       | P212121                                     |          |  |  |
| Unit cell dimensions              | a = 6.2400(3) Å                             | α = 90°. |  |  |
|                                   | b = 7.3164(4) Å                             | β = 90°. |  |  |
|                                   | c = 17.7083(8) Å                            | γ = 90°. |  |  |
| Volume                            | 808.46(7) Å <sup>3</sup>                    |          |  |  |
| Z                                 | 4                                           |          |  |  |
| Density (calculated)              | 1.547 Mg/m <sup>3</sup>                     |          |  |  |
| Absorption coefficient            | 0.601 mm <sup>-1</sup>                      |          |  |  |
| F(000)                            | 392                                         |          |  |  |
| Crystal size                      | 0.429 x 0.327 x 0.101 mm <sup>3</sup>       |          |  |  |
| Theta range for data collection   | 3.462 to 30.268°.                           |          |  |  |
| Index ranges                      | -8<=h<=8, -8<=k<=10, -25<=l<=24             |          |  |  |
| Reflections collected             | 7475                                        |          |  |  |
| Independent reflections           | 2183 [R(int) = 0.0277]                      |          |  |  |
| Completeness to theta = 25.242°   | 99.8 %                                      |          |  |  |
| Absorption correction             | Semi-empirical from equivalents             |          |  |  |
| Max. and min. transmission        | 1.00000 and 0.90790                         |          |  |  |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |          |  |  |
| Data / restraints / parameters    | 2183 / 0 / 100                              |          |  |  |
| Goodness-of-fit on F <sup>2</sup> | 1.094                                       |          |  |  |
| Final R indices [I>2sigma(I)]     | R1 = 0.0328, wR2 = 0.0673                   |          |  |  |
| R indices (all data)              | R1 = 0.0382, wR2 = 0.0692                   |          |  |  |
| Absolute structure parameter      | -0.02(5)                                    |          |  |  |
| Extinction coefficient            | n/a                                         |          |  |  |
| Largest diff. peak and hole       | 0.388 and -0.337 e.Å <sup>-3</sup>          |          |  |  |
| Independent reflections           | 1504 [R(int) = 0.0243]                      |          |  |  |
| Completeness to theta = 67.684°   | 99.9 %                                      |          |  |  |
| Absorption correction             | Gaussian                                    |          |  |  |
| Max. and min. transmission        | 1.000 and 0.136                             |          |  |  |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |          |  |  |
| Data / restraints / parameters    | 1504 / 1 / 100                              |          |  |  |
| Goodness-of-fit on F <sup>2</sup> | 1.065                                       |          |  |  |
| Final R indices [I>2sigma(I)]     | R1 = 0.0281, wR2 = 0.0738                   |          |  |  |
| R indices (all data)              | R1 = 0.0281, wR2 = 0.0738                   |          |  |  |
| Absolute structure parameter      | 0.014(17)                                   |          |  |  |
| Extinction coefficient            | n/a                                         |          |  |  |
| Largest diff. peak and hole       | 0.353 and -0.330 e.Å <sup>-3</sup>          |          |  |  |

#### 2. General Polymerisation Procedures

#### Ring opening polymerisation of 2



Under an argon atmosphere 4-MeBnOH (16  $\mu$ L, 0.5 mol dm<sup>-3</sup> in anhydrous DCM, 0.008 mmol, 1.0 equiv.) and TBD (16  $\mu$ L, 0.5 mol dm<sup>-3</sup> in anhydrous DCM, 0.008 mmol, 1.0 equiv.) were added to a solution of monomer **2** (0.150 g, 0.788 mmol, 100 equiv.) in anhydrous DCM (0.39 mL, 2.0 mol dm<sup>-3</sup>). The mixture was stirred at room temperature for 6 h and quenched by the addition of a benzoic acid solution ( $\approx$  30 equiv.). The solvent was removed under reduced pressure and the crude solid was dissolved in CHCl<sub>3</sub> and precipitated from Et<sub>2</sub>O. The product was isolated by centrifugation (3500 rpm, 2 x 5 minutes), washed twice with Et<sub>2</sub>O and dried under vacuum. The polymer was isolated as a pale-yellow solid.

 $\delta_{H}$  (500 MHz; chloroform-d): 5.18-5.06 (C<sup>4</sup>H, 1H, m), 3.93 (C<sup>1</sup>H, 1H, d, J<sub>HH</sub> = 11.1 Hz), 3.80 (C<sup>6</sup>H, 1H, d, J<sub>HH</sub> = 12.5 Hz), 3.69-3.52 (C<sup>5</sup>H, C<sup>6</sup>H, 2H, m), 3.45-3.35 (C<sup>1</sup>H, 1H, m), 2.46-2.33 (C<sup>3</sup>H, 1H, m), 1.83-1.69 (C<sup>2</sup>H, 2H, m), 1.63-1.51 (C<sup>3</sup>H, 1H, m) ppm;  $\delta_{C}$  (126 MHz; chloroform-d): 223.8 (C<sup>7</sup>), 193.5 (C<sup>8</sup>), 79.2 (C<sup>4</sup>), 77.6 (C<sup>5</sup>), 68.0 (C<sup>1</sup>), 39.0 (C<sup>6</sup>), 25.1 (C<sup>3</sup>), 25.0 (C<sup>2</sup>) ppm. v<sub>max</sub> (cm<sup>-1</sup>): 2942-2851 (CH), 1268-1226 (C(S)O<sub>2</sub>), 1268-1226 (C(S)S<sub>2</sub>), 1090-1033 (C–S).





Fig. S54 Annotated <sup>1</sup>H NMR spectrum of poly(2) (*M*<sub>n</sub> 6400 g mol<sup>-1</sup> (*D* 1.60)) in chloroform-d.



Fig. S55 Annotated  ${}^{13}C{}^{1}H$  NMR spectrum of poly(2) ( $M_n$  6400 g mol<sup>-1</sup> (D 1.60)) in chloroform-d.



Fig. S56 COSY (<sup>1</sup>H–<sup>1</sup>H) NMR spectrum of poly(2) ( $M_n$  6400 g mol<sup>-1</sup> (D 1.60)) in chloroform-d.



**Fig. S58**  ${}^{13}C{}^{1}H$  DEPT135 NMR spectrum of poly(**2**) ( $M_n$  6400 g mol<sup>-1</sup> (D 1.60)) in chloroform-d.

#### Size-Exclusion Chromatography analysis of the polymer derived from 2



**Fig. S59** SEC trace of poly(**2**) (*M*<sub>n</sub> 5700 g mol<sup>-1</sup> (*D* 1.55)).



Fig. S60 SEC trace of poly(2) (*M*<sub>n</sub> 7700 g mol<sup>-1</sup> (*Đ* 1.57)).

## DSC analysis of the polymer derived from 2



**Fig. S61** DSC trace of poly(**2**) ( $M_n$  5700 g mol<sup>-1</sup> ( $\mathcal{D}$  1.55)), first heating and cooling cycle between 20 and 180 °C. Single exothermic peak, corresponding to the glass transition temperature ( $T_g$ ) ~ 78 °C of the polymer.



**Fig. S62** DSC trace of poly(**2**) ( $M_n$  5700 g mol<sup>-1</sup> ( $\mathcal{D}$  1.55)), second heating and cooling cycle between 0 and 180 °C. Single transition, corresponding to the glass transition temperature ( $T_g$ ) ≈ 55 °C of the polymer.



**Fig. S63** DSC trace of poly(**2**) ( $M_n$  7700 g mol<sup>-1</sup> ( $\mathcal{D}$  1.57)), second heating and cooling cycle between 0 and 180 °C. Single transition, corresponding to the glass transition temperature ( $T_g$ ) ≈ 92 °C of the polymer.



**Fig. S64** DSC trace of poly(**2**) ( $M_n$  7700 g mol<sup>-1</sup> ( $\mathcal{D}$  1.57)), second heating and cooling cycle between 0 and 180 °C. Single transition, corresponding to the glass transition temperature ( $T_g$ ) ≈ 58 °C of the polymer.

#### TGA analysis of the polymer derived from 2



**Fig. S65** TGA trace of poly(**2**) ( $M_n$  5700 g mol<sup>-1</sup> ( $\mathcal{D}$  1.55)). The monomer was heated from 30 to 800 °C under argon at 10 °C min<sup>-1</sup>. Obtained values:  $T_{d5\%}$ = 195 °C;  $T_{d,max}$  = 232 °C with 3 % char remaining at 800 °C.



**Fig. S66** TGA trace of poly(**2**) ( $M_n$  7700 g mol<sup>-1</sup> (D 1.57)). The monomer was heated from 30 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values:  $T_{d5\%}$ = 191 °C;  $T_{d,max}$  = 204 °C with 4 % char remaining at 600 °C.

FT-IR analysis of the polymer derived from 2



Fig. S67 Labelled FT-IR spectrum of poly(2) ( $M_n$  6400 g mol<sup>-1</sup> ( $\mathcal{D}$  1.60)).

## Influence of concentration on the ROP of 2



Table S1 Ring-opening polymerisation of 1 and 2 over different initial monomer concentrations.<sup>a</sup>

| Entry | М | [ <b>M</b> ]₀ (mol L <sup>-1</sup> ) | Time (h) | Conv. <sup><i>b</i></sup> (%) | $[M]_{eq}$ (mol L <sup>-1</sup> ) |
|-------|---|--------------------------------------|----------|-------------------------------|-----------------------------------|
| 11    | 1 | 0.5                                  | 6        | 58                            | 0.21                              |
| 21    | 1 | 1.0                                  | 6        | 78                            | 0.22                              |
| 31    | 1 | 2.0                                  | 6        | 90                            | 0.20                              |
| 4     | 2 | 1.0                                  | 6        | 28                            | 0.72                              |
| 5     | 2 | 2.0                                  | 6        | 54                            | 0.92                              |
| 6     | 2 | 3.0                                  | 6        | 59                            | 1.22                              |
| 7     | 2 | 4.0                                  | 6        | 65                            | 1.40                              |

<sup>*a*</sup>Polymerisations were carried out at room temperature under an argon atmosphere, in anhydrous DCM solvent with [**M**]:[TBD]:[I] of 100:1:1 (I = 4-methylbenzylalcohol); <sup>*b*</sup>Monomer conversion to polymer, calculated based on the relative integration of the monomer proton signals and polymer signals, in the <sup>1</sup>H NMR spectrum.



**Fig. S68** Plot of monomer conversion at equilibrium *versus*  $[2]_0$  for the ROP of **2** with 4-MeBnOH and TBD catalyst. Carried out in DCM at room temperature, for  $[2]_0 = 1.0-4.0$  mol L<sup>-1</sup> and  $[2]_0$ :[TBD]\_0:[4-MeBnOH]\_0 = 100:1:1.



**Fig. S69** Plot of  $[\mathbf{2}]_{eq}$  against  $[\mathbf{2}]_0$  for the ROP of  $\mathbf{2}$  with 4-MeBnOH and TBD catalyst. Carried out in DCM at room temperature, for  $[\mathbf{2}]_0 = 1.0-4.0$  mol L<sup>-1</sup> and  $[\mathbf{2}]_0$ :[TBD]<sub>0</sub>:[4-MeBnOH]<sub>0</sub> = 100:1:1.

#### Determination of ROP thermodynamic parameters of 2



Table S2 Ring-opening polymerisation of 2 over a 0–60 °C temperature range.<sup>a</sup>

| Entry | Temp. (°C) | [ <b>1</b> ] <sub>0</sub> :[TBD] <sub>0</sub> :[I] <sub>0</sub> <sup>b</sup> | Time (h) | Conv. <sup>c</sup> (%) | $M_{n,CALC}^{d}$ | $M_{n,SEC}^{e}$ | $M_{w,SEC}^{e}$ | Ðм <sup>е</sup> |
|-------|------------|------------------------------------------------------------------------------|----------|------------------------|------------------|-----------------|-----------------|-----------------|
| 1     | 0          | 100:1:1                                                                      | 20       | 27                     | 5260             | 4700            | 6500            | 1.35            |
| 3     | 20         | 100:1:1                                                                      | 20       | 19                     | 3740             | 4200            | 5400            | 1.27            |
| 5     | 40         | 100:1:1                                                                      | 20       | 14                     | 2410             | 4100            | 5000            | 1.23            |
| 7     | 60         | 100:1:1                                                                      | 20       | 3                      | 690              | -               | -               | -               |

<sup>*a*</sup>Polymerisations were carried out at different temperatures, under an argon atmosphere, in anhydrous 1,2dichloroethane solvent with initial [**2**]<sub>0</sub> = 2 mol L<sup>-1</sup> (**2** = monomer); <sup>*b*</sup>I = 4-methylbenzylalcohol; <sup>*c*</sup>Monomer conversion to polymer, calculated based on the relative integration of the H-4' proton signal of **2** ( $\delta_{H}$  = 4.21-4.11) and poly(**2**) ( $\delta_{H}$  = 5.18-5.06), in the <sup>1</sup>H NMR spectrum; <sup>*d*</sup>Number-average molecular weight as calculated using M<sub>r</sub>(I)+(M<sub>r</sub>(monomer) × [monomer]<sub>0</sub>/[I]<sub>0</sub> × conv/100%), units given in g mol<sup>-1</sup>; <sup>*e*</sup>Number-average molecular weight and dispersity ( $M_{n,SEC}$ ,  $M_{w,SEC}$ ,  $\mathcal{D}_{M}$ ), calculated by SEC relative to polystyrene standards in THF eluent, units given in g mol<sup>-1</sup>.



**Fig. S70** ROP of **2** with 4-MeBnOH and TBD catalyst: calculation of the thermodynamic parameters from a plot of R x  $ln([M]_{eq}/M]_0)$  as a function of 1/T, where T is the absolute temperature. Carried out in 1,2-dichloroethane, over a temperature range of 0–60 °C for [**2**]<sub>0</sub> = 2.0 mol L<sup>-1</sup> and [**2**]<sub>0</sub>:[TBD]<sub>0</sub>:[4-MeBnOH]<sub>0</sub> = 100:1:1.

$$R \times \ln\left(\frac{M_{eq}}{M_0}\right) = \frac{\Delta H_p}{T} - \Delta S_p$$
$$R \times \ln\left(\frac{M_{eq}}{M_0}\right) = -3.43x + 9.92$$
$$T_c = \frac{\Delta H_p}{\Delta S_p} = \frac{-3430 \text{ J mol}^{-1}}{-9.92 \text{ J K}^{-1} \text{mol}^{-1}} = 346 \text{ K} = 73 \text{ °C}$$

Standardised entropy of polymerisation for different concentrations

$$\Delta S_{p} = \Delta S_{p}^{0} + (R \times \ln([M]))$$
$$\Delta S_{p}^{0} = \Delta S_{p} - (R \times \ln([M]))$$

$$\Delta S_{\rm p}^0 = -9.92 - (8.3145 \times \ln(2)) = -15.7 \,\mathrm{J \, mol^{-1} \, K^{-1}}$$

| Property                      | Value | Unit                                | Property             | Value | Unit                                |
|-------------------------------|-------|-------------------------------------|----------------------|-------|-------------------------------------|
| [M]                           | 2     | mol L <sup>-1</sup>                 | [M]                  | 1     | mol L <sup>-1</sup>                 |
| $\Delta H_{\rm p}$            | -3.43 | kJ mol <sup>-1</sup>                | $\Delta H_{ m p}$    | -3.43 | kJ mol <sup>−1</sup>                |
| Δ <i>S</i> <sub>p</sub> (2 M) | -9.92 | J mol <sup>-1</sup> K <sup>-1</sup> | $\Delta S_{p}$ (1 M) | -15.7 | J mol <sup>-1</sup> K <sup>-1</sup> |

NMR analysis of poly(2) after heating to 180 °C



Fig. S71 Annotated  ${}^{13}C{}^{1}H$  NMR spectrum of poly(2) ( $M_n$  6400 g mol<sup>-1</sup> ( $\mathcal{D}$  1.60)), after heating to 180 °C, in chloroform-d.



**Fig. S72** Stacked <sup>13</sup>C[<sup>1</sup>H] NMR spectra of monomer **2** (top), poly(**2**) (middle) and poly(**2**) once heated to 180 °C for 5 minutes (bottom). Poly(**2**) was placed in a sample vial and heated without solvent, NMR spectra indicates an almost quantitative recovery of the xanthate monomer.

Size-Exclusion Chromatography analysis of poly(2) after heating to 180 °C



Fig. S73 SEC trace of supernatant obtained from precipitating poly(2) ( $M_n$  5500 g mol<sup>-1</sup> ( $\mathcal{D}$  1.54)) after heating to 180 °C.



Fig. S74 SEC trace of solid obtained from precipitating poly(2) (Mn 5500 g mol<sup>-1</sup> ( $\mathcal{D}$  1.54)) after heating to 180 °C.

## Ring opening polymerisation of 3



Under an argon atmosphere 4-MeBnOH (11.5  $\mu$ L, 0.5 mol dm<sup>-3</sup> in anhydrous DCM, 0.0057 mmol, 1.0 equiv.) and TBD (11.5  $\mu$ L, 0.5 mol dm<sup>-3</sup> in anhydrous DCM, 0.0057 mmol, 1.0 equiv.) were added to a solution of monomer **3** (0.100 g, 0.574 mmol, 10 equiv.) in anhydrous DCM (0.58 mL, 1.0 mol dm<sup>-3</sup>). The mixture was stirred at room temperature for 6 h and quenched by the addition of a benzoic acid solution ( $\approx$  30 equiv.). The solvent was removed under reduced pressure and the crude solid was mixed with CHCl<sub>3</sub> and precipitated from Et<sub>2</sub>O. The product was isolated by centrifugation (3500 rpm, 2 x 5 minutes), washed twice with Et<sub>2</sub>O and dried under vacuum. The polymer was isolated as a white solid.

 $\delta_{H}$  (500 MHz; chloroform-d): 4.71-4.58 (C<sup>4</sup>H, 1H, m), 3.93 (C<sup>1</sup>H, 1H, d, J<sub>HH</sub> = 11.5 Hz), 3.54-3.36 (C<sup>5</sup>H, C<sup>1</sup>H, 2H, m), 3.25 (C<sup>6</sup>H, 1H, d, J<sub>HH</sub> = 12.5 Hz), 2.92 (C<sup>6</sup>H, 1H, dd, J<sub>HH</sub> = 14.2, 7.8 Hz), 2.25 (C<sup>3</sup>H, 1H, d, J<sub>HH</sub> = 8.7 Hz), 1.80-1.66 (C<sup>2</sup>H, 2H, m), 1.63-1.49 (C<sup>3</sup>H, 1H, m) ppm;  $\delta_{C}$  (126 MHz; chloroform-d): 171.2 (C<sup>7</sup>), 78.2 (C<sup>5</sup>), 74.7 (C<sup>4</sup>), 68.1 (C<sup>1</sup>), 33.1 (C<sup>6</sup>), 29.0 (C<sup>3</sup>), 24.8 (C<sup>2</sup>) ppm.  $\nu_{max}$  (cm<sup>-1</sup>): 2954-2861 (CH), 1710 (C(O)SO), 1147-1061 (C–O), 1147-1061 (C–S).

## NMR analysis of the polymer derived from 3



**Fig. S75** Annotated <sup>1</sup>H NMR spectrum of poly(**3**) ( $M_n$  2600 g mol<sup>-1</sup> ( $\mathcal{D}$  1.50)) in chloroform-d. Peaks due to HFIP visible at 4.40 (q), 3.65 (s, br) ppm.



**Fig. S76** Annotated <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of poly(**3**) ( $M_n$  2600 g mol<sup>-1</sup> ( $\mathcal{D}$  1.50)) in chloroform-d. Peaks due to HFIP visible at 121.5 (q), 69.7 (m) ppm.



**Fig. S77**  ${}^{13}C{}^{1H}$  DEPT135 NMR spectrum of poly(**3**) ( $M_n$  2600 g mol<sup>-1</sup> (D 1.50)) in chloroform-d.



Fig. S78 COSY ( $^{1}H^{-1}H$ ) NMR spectrum of poly(3) (M<sub>n</sub> 2600 g mol<sup>-1</sup> (D 1.50)) in chloroform-d.



Fig. S79 HSQC ( $^{1}H-^{13}C$ ) NMR spectrum of poly(3) (M<sub>n</sub> 2600 g mol-1 (D 1.50)) in chloroform-d.



Size-Exclusion Chromatography analysis of the polymer derived from 3

**Fig. S80** SEC trace of poly(**3**) ( $M_n$  2600 g mol<sup>-1</sup> (D 1.50)).

S58



Fig. S81 SEC trace of poly(3) (*M*<sub>n</sub> 2800 g mol<sup>-1</sup> (*Đ* 1.46)).





**Fig. S82** DSC trace of poly(**3**) ( $M_n$  2600 g mol<sup>-1</sup> (D 1.50)), first heating and cooling cycle between -20 and 180 °C. No peaks visible in DSC thermogram.



**Fig. S83** DSC trace of poly(**3**) ( $M_n$  2600 g mol<sup>-1</sup> (D 1.50)), second heating and cooling cycle between -20 and 180 °C. No peaks visible in DSC thermogram.





**Fig. S84** TGA trace of poly(**3**) ( $M_n$  2800 g mol<sup>-1</sup> ( $\mathcal{D}$  1.46)). The monomer was heated from 30 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values:  $T_{d5\%}$  = 203 °C;  $T_{d,max}$  = 241 °C with 2 % char remaining at 600 °C.



**Fig. S85** TGA trace of poly(**3**) ( $M_n$  2600 g mol<sup>-1</sup> ( $\mathcal{D}$  1.50)). The monomer was heated from 30 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values:  $T_{d5\%}$  = 202 °C;  $T_{d,max}$  = 228 °C with 2 % char remaining at 600 °C.



## DMA analysis of the polymer derived from 3

**Fig. S86** DMA temperature sweep test of poly(**3**) ( $M_n$  2600 g mol<sup>-1</sup> (D 1.50)): A) Storage modulus; B) Loss modulus. The monomer was heated from -20 to 180 °C under argon at 3 °C min<sup>-1</sup>. Single transition observed corresponding to an unknown alteration to the polymer structure  $T_{max}$  = 150 °C.



**Fig. S87** DMA temperature sweep test of poly(**3**) ( $M_n$  2800 g mol<sup>-1</sup> ( $\mathcal{D}$  1.46)): )): A) Storage modulus; B) Loss modulus. The monomer was heated from -20 to 180 °C under argon at 3 °C min<sup>-1</sup>. Single transition observed corresponding to an unknown alteration to the polymer structure  $T_{max}$  = 155 °C.

# FT-IR analysis of the polymer derived from 3



**Fig. S88** Labelled FT-IR spectrum of poly(**3**) (*M*<sub>n</sub> 2600 g mol<sup>-1</sup> (*Đ* 1.50)).

**Ring opening polymerisation of 4** 



Under an argon atmosphere 4-MeBnOH (11.5  $\mu$ L, 0.5 mol dm<sup>-3</sup> in anhydrous DCM, 0.006 mmol, 1.0 equiv.) and TBD (11.5  $\mu$ L, 0.5 mol dm<sup>-3</sup> in anhydrous DCM, 0.006 mmol, 1.0 equiv.) were added to a solution of monomer **4** (0.100 g, 0.574 mmol, 100 equiv.) in anhydrous DCM (0.57 mL, 1.0 mol L<sup>-1</sup>). The mixture was stirred at room temperature for 1 h and quenched by the addition of a benzoic acid solution ( $\approx$  30 equiv.). The solvent was removed under reduced pressure and the crude solid was dissolved in CHCl<sub>3</sub> and precipitated from Et<sub>2</sub>O. The product was isolated by centrifugation (3500 rpm, 2 x 5 minutes), washed twice with Et<sub>2</sub>O and dried under vacuum. The polymer was isolated as a white solid.

 $\delta_{H}$  (500 MHz; chloroform-d): 5.17-5.04 (C<sup>4</sup>H, 1H, m), 4.68-4.38 (C<sup>6</sup>H, 2H, m), 4.01-3.91 (C<sup>1</sup>H, 1H, m), 3.78-3.64 (C<sup>5</sup>H, 1H, m), 3.44-3.35 (C<sup>1</sup>H, 1H, m), 2.46-2.34 (C<sup>3</sup>H, 1H, m), 1.84-1.67 (C<sup>2</sup>H, 2H, m), 1.61-1.48 (C<sup>3</sup>H, 1H, m) ppm;  $\delta_{C}$  (126 MHz; chloroform-d): 195.4 (C<sup>7</sup>), 194.1 (C<sup>7</sup>), 193.1 (C<sup>7</sup>), 76.7 (C<sup>5</sup>), 76.6 (C<sup>4</sup>), 72.2 (C<sup>1</sup>), 67.8 (C<sup>6</sup>), 28.3 (C<sup>3</sup>), 24.8 (C<sup>2</sup>) ppm. v<sub>max</sub> (cm<sup>-1</sup>): 2948-2854 (CH), 1220 (C(S)O<sub>2</sub>), 1098 (C–O).



#### NMR analysis of the polymer derived from 4

Fig. S89 Annotated <sup>1</sup>H NMR spectrum of poly(4) ( $M_n$  7100 g mol<sup>-1</sup> (D 1.32)) in chloroform-d.



Fig. S90 Annotated  ${}^{13}C{}^{1}H$  NMR spectrum of poly(4) ( $M_n$  7100 g mol $^{-1}$  (D 1.32)) in chloroform-d.



Fig. S91 COSY ( $^{1}H-^{1}H$ ) NMR spectrum of poly(4) ( $M_{n}$  7100 g mol<sup>-1</sup> ( $\mathcal{D}$  1.32)) in chloroform-d.



Fig. S92 HSQC ( $^{1}H-^{13}C$ ) NMR spectrum of poly(4) ( $M_{n}$  7100 g mol<sup>-1</sup> (D 1.32)) in chloroform-d.



Fig. S93  ${}^{13}C{}^{1}H$  DEPT135 NMR spectrum of poly(4) ( $M_n$  7100 g mol<sup>-1</sup> (D 1.32)) in chloroform-d.

## Size-Exclusion Chromatography analysis of the polymer derived from 4



**Fig. S94** SEC trace of poly(**4**) (*M*<sub>n</sub> 8000 g mol<sup>-1</sup> (*Đ* 1.32)).



**Fig. S95** SEC trace of poly(**4**) (*M*<sub>n</sub> 5700 g mol<sup>-1</sup> (*D* 1.38)).

## DSC analysis of the polymer derived from 4



**Fig. S96** DSC trace of poly(**4**) ( $M_n$  7100 g mol<sup>-1</sup> ( $\mathcal{D}$  1.32)), second heating and cooling cycle between 0 and 120 °C. Single exothermic peak, corresponding to the glass transition temperature ( $T_g$ )  $\approx$  104 °C of the polymer.



**Fig. S97** DSC trace of poly(**4**) ( $M_n$  5700 g mol<sup>-1</sup> ( $\mathcal{D}$  1.38)), second heating and cooling cycle between 0 and 120 °C. Single transition, corresponding to the glass transition temperature ( $T_g$ ) ≈ 86 °C of the polymer.



**Fig. S98** DSC trace of poly(**4**) ( $M_n$  5700 g mol<sup>-1</sup> ( $\mathcal{D}$  1.38)), third heating and cooling cycle between 0 and 220 °C. Two transitions, corresponding to the glass transition temperature ( $T_g$ )  $\approx$  90 °C and the suspected degradation temperature  $T \approx 158$  °C of the polymer.





**Fig. S99** TGA trace of poly(**4**) ( $M_n$  5700 g mol<sup>-1</sup> ( $\mathcal{D}$  1.38)). The monomer was heated from 30 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values: T<sub>d5%</sub> = 136 °C; T<sub>d,max</sub> = 303 °C with 3 % char remaining at 600 °C.



**Fig. S100** TGA trace of poly(**4**) ( $M_n$  7100 g mol<sup>-1</sup> ( $\mathcal{D}$  1.32)). The monomer was heated from 30 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values: T<sub>d5%</sub> = 140 °C; T<sub>d,max</sub> = 312 °C with 4 % char remaining at 600 °C.

FT-IR analysis of the polymer derived from 4



**Fig. S101** Labelled FT-IR spectrum of poly(**4**) (*M*<sub>n</sub> 7100 g mol<sup>-1</sup> (*D* 1.32)).

#### **Ring opening polymerisation of 5**



Under an argon atmosphere 4-MeBnOH (12.6  $\mu$ L, 0.5 mol dm<sup>-3</sup> in anhydrous DCM, 0.006 mmol, 1.0 equiv.) and TBD (12.6  $\mu$ L, 0.5 mol dm<sup>-3</sup> in anhydrous DCM, 0.006 mmol, 1.0 equiv.) were added to a solution of monomer **5** (0.100 g, 0.632 mmol, 100 equiv.) in anhydrous DCM (0.63 mL, 1.0 mol L<sup>-1</sup>). The mixture was stirred at room temperature for 0.15 h and quenched by the addition of a benzoic acid solution ( $\approx$  30 equiv.). The solvent was removed under reduced pressure and the crude solid was dissolved in CHCl<sub>3</sub> and precipitated from Et<sub>2</sub>O. The product was isolated by centrifugation (3500 rpm, 2 x 5 minutes), washed twice with Et<sub>2</sub>O and dried under vacuum. The polymer was isolated as a white solid.

 $\delta_{H}$  (500 MHz; chloroform-d): 4.47-4.41 (C<sup>4</sup>H, 1H, m), 4.32-4.14 (C<sup>6</sup>H, 2H, m), 3.98-3.88 (C<sup>1</sup>H, 1H, m), 3.54-3.45 (C<sup>5</sup>H, 1H, m), 3.41-3.31 (C<sup>1</sup>H, 1H, m), 2.34-2.24 (C<sup>3</sup>H, 1H, m), 1.80-1.64 (C<sup>2</sup>H, 2H, m), 1.59-1.47 (C<sup>3</sup>H, 1H, m) ppm;  $\delta_{C}$  (126 MHz; chloroform-d): 155.2 (C<sup>7</sup>), 154.2 (C<sup>7</sup>), 153.3 (C<sup>7</sup>), 77.1 (C<sup>5</sup>), 72.1 (C<sup>4</sup>), 67.8 (C<sup>1</sup>), 67.1 (C<sup>6</sup>), 29.1 (C<sup>3</sup>), 24.8 (C<sup>2</sup>) ppm. v<sub>max</sub> (cm<sup>-1</sup>): 2956-2860 (CH), 1741 (C(0)O<sub>2</sub>), 1233 (C–O).



#### NMR analysis of the polymer derived from 5

Fig. S102 Annotated <sup>1</sup>H NMR spectrum of poly(5) ( $M_n$  4900 g mol<sup>-1</sup> ( $\mathcal{D}$  1.27)) in chloroform-d.


Fig. S103 Annotated  ${}^{13}C{}^{1}H$  NMR spectrum of poly(5) ( $M_n$  4900 g mol<sup>-1</sup> (D 1.27)) in chloroform-d.



**Fig. S104** COSY (<sup>1</sup>H–<sup>1</sup>H) NMR spectrum of poly(**5**) (*M*<sub>n</sub> 4900 g mol<sup>-1</sup> (*D* 1.27)) in chloroform-d.



**Fig. S106** <sup>13</sup>C{<sup>1</sup>H} DEPT135 NMR spectrum of poly(**5**) ( $M_n$  4900 g mol<sup>-1</sup> (D 1.27)) in chloroform-d.

### Size-Exclusion Chromatography analysis of the polymer derived from 5



**Fig. S107** SEC trace of poly(**5**) (*M*<sub>n</sub> 4900 g mol<sup>-1</sup> (*Đ* 1.27)).



**Fig. S108** SEC trace of poly(5) ( $M_n$  6000 g mol<sup>-1</sup> (D 1.23)) with a bimodal distribution.

### DSC analysis of the polymer derived from 5



**Fig. S109** DSC trace of poly(**5**) ( $M_n$  4900 g mol<sup>-1</sup> ( $\mathcal{D}$  1.27)), second heating and cooling cycle between 0 and 180 °C. Single exothermic peak, corresponding to the glass transition temperature ( $T_g$ )  $\approx$  93 °C of the polymer.



**Fig. S110** DSC trace of poly(5) ( $M_n$  6000 g mol<sup>-1</sup> ( $\mathcal{D}$  1.23)), second heating and cooling cycle between 0 and 180 °C. Single transition, corresponding to the glass transition temperature ( $T_g$ ) ≈ 90 °C of the polymer.

#### TGA analysis of the polymer derived from 5



**Fig. S111** TGA trace of poly(5) ( $M_n$  4900 g mol<sup>-1</sup> ( $\mathcal{D}$  1.27)), the monomer was heated from 30 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values:  $T_{d5\%}$  = 215 °C;  $T_{d,max}$  = 256 °C with 4 % char remaining at 600 °C.



**Fig. S112** TGA trace of poly(**5**) ( $M_n$  6000 g mol<sup>-1</sup> ( $\mathcal{D}$  1.23)), the monomer was heated from 30 to 600 °C under argon at 10 °C min<sup>-1</sup>. Obtained values: T<sub>d5%</sub> = 215 °C; T<sub>d,max</sub> = 262 °C with 2 % char remaining at 600 °C.

## FT-IR analysis of the polymer derived from 5



Fig. S113 Labelled FT-IR spectrum of poly(5) (*M*<sub>n</sub> 4900 g mol<sup>-1</sup> (*Đ* 1.27)).

### 3. DFT Computational Studies

All calculations were performed using the Gaussian16 suite of codes (revision D.01).<sup>3</sup> Geometries were fully optimised without any symmetry or geometry constraints using the  $r\omega$ B97XD LC hybrid functional developed by Chai and Head-Gordon. This includes an empirical dispersion correction and has been shown to effectively reproduce thermodynamic and kinetic experimental data. Calculations were carried out using a temperature of 298K and solvent effects in dichloromethane considered using a conductor-like polarisable continuum model (CPCM).<sup>4, 5</sup>

The nature of all the stationary points as minima was verified by calculations of the vibrational frequency spectrum. Only the most stable conformational isomers are reported for all intermediates. Free energies were calculated within the harmonic approximation for vibrational frequencies.

### DFT Modelling of the isodesmic ring opening for all monomers

An isodesmic reaction is a chemical reaction in which the type of chemical bonds broken in the reactant are the same as the type of bonds formed in the reaction product and is commonly used as a hypothetical reaction in thermochemistry to calculate the ring-strain of cyclic molecules.<sup>6</sup> The reaction between a dimethyl substituted carbonate or the appropriate sulfur-containing carbonate and one molecule of the corresponding cyclic monomer (**1**, **2**, **3**, **4** or **5**) was examined using DFT calculations. A split-valence double  $\zeta$  with polarization and diffuse functions 6-31+G(d,p) basis set was used and the addition of the dimethyl carbonate or the appropriate sulfur-containing carbonate/thiocarbonate/thioncarbonate/xanthate linkage was considered.

Full coordinates for all the stationary points, together with computed free Gibbs energy and vibrational frequency data, are available *via* the corresponding Gaussian16 output files, stored in the digital repository: DOI:10.6084/m9.figshare.21411687.



Fig. S114 Isodesmic reactions between (a) dimethyl xanthate and unsaturated xanthate monomer 1; (b) dimethyl xanthate and saturated xanthate monomer 2; (c) dimethyl thiocarbonate and saturated thiocarbonate monomer 3; (d) dimethyl thionocarbonate and saturated thionocarbonate monomer 4 and (e) dimethyl carbonate and saturated carbonate monomer 5.

**Table S3** Computed Gibbs Free Energies at the  $r\omega B97XD/6-31+g(d)/cpcm=dichloromethane/298K$  level of theory for the isodesmic ring-opening of **1** with dimethyl xanthate.

|             | Structure                        | G (Hartree)  | ∆G (kcal/mol) | H (Hartree)  | ΔH (kcal/mol) |
|-------------|----------------------------------|--------------|---------------|--------------|---------------|
|             | 1                                | -1218.094826 | -             | -1218.048719 | -             |
|             | C(S)SOMe <sub>2</sub>            | -989.383343  | -             | -989.342094  | -             |
|             | <b>1</b> + C(S)SOMe <sub>2</sub> | -2207.478169 | 0.00          | -2207.390813 | 0.00          |
| Isodesmic   | lso- <b>1</b>                    | -2207.47285  | 3.337720      | -2207.40104  | -6.417535     |
| Ring Strain |                                  |              |               |              |               |

**Table S4** Computed Gibbs Free Energies at the  $r\omega B97XD/6-31+g(d)/cpcm=dichloromethane/298K$  level of theory for the isodesmic ring-opening of **2** with dimethyl xanthate.

|             | Structure                        | G (Hartree)  | ∆G (kcal/mol) | H (Hartree)  | ΔH (kcal/mol) |
|-------------|----------------------------------|--------------|---------------|--------------|---------------|
|             | 2                                | -1219.313862 | -             | -1219.267059 | -             |
|             | C(S)SOMe <sub>2</sub>            | -989.383343  | -             | -989.342094  | -             |
|             | <b>2</b> + C(S)SOMe <sub>2</sub> | -2208.697205 | 0.00          | -2208.609153 | 0.00          |
| Isodesmic   | lso- <b>2</b>                    | -2208.689133 | 5.065253      | -2208.619061 | -6.217359     |
| Ring Strain |                                  |              |               |              |               |

**Table S5** Computed Gibbs Free Energies at the  $r\omega$ B97XD/6-31+g(d)/cpcm=dichloromethane/298K level of theory for the isodesmic ring-opening of **3** with dimethyl thiocarbonate.

|             | Structure                        | G (Hartree)  | ∆G (kcal/mol) | H (Hartree)  | ΔH (kcal/mol) |
|-------------|----------------------------------|--------------|---------------|--------------|---------------|
|             | 3                                | -896.364993  | -             | -896.319519  | -             |
|             | C(O)SOMe <sub>2</sub>            | -666.435850  | -             | -666.395148  | -             |
|             | <b>3</b> + C(O)SOMe <sub>2</sub> | -1562.800843 | 0.00          | -1562.714667 | 0.00          |
| Isodesmic   | Iso- <b>3</b>                    | -1562.790318 | 6.604532      | -1562.722493 | -4.910885     |
| Ring Strain |                                  |              |               |              |               |

**Table S6** Computed Gibbs Free Energies at the  $r\omega B97XD/6-31+g(d)/cpcm=dichloromethane/298K$  level of theory for the isodesmic ring-opening of **4** with dimethyl thionocarbonate.

|             | Structure                                     | G (Hartree)  | ΔG (kcal/mol) | H (Hartree)  | ΔH (kcal/mol) |
|-------------|-----------------------------------------------|--------------|---------------|--------------|---------------|
|             | 4                                             | -896.336981  | -             | -896.291623  | -             |
|             | C(S)O <sub>2</sub> Me <sub>2</sub>            | -666.407026  | -             | -666.367840  | -             |
|             | <b>4</b> + C(S)O <sub>2</sub> Me <sub>2</sub> | -1562.744007 | 0.00          | -1562.659463 | 0.00          |
| Isodesmic   | Iso- <b>4</b>                                 | -1562.738663 | 3.353408      | -1562.673133 | -8.578048     |
| Ring Strain |                                               |              |               |              |               |

**Table S7** Computed Gibbs Free Energies at the  $r\omega$ B97XD/6-31+g(d)/cpcm=dichloromethane/298K level of theory for the isodesmic ring-opening of **5** with dimethyl carbonate.

|   | Structure | G (Hartree) | ΔG (kcal/mol) | H (Hartree) | ΔH (kcal/mol) |
|---|-----------|-------------|---------------|-------------|---------------|
| 2 |           |             |               |             |               |

|             | 5                                      | -573.390562 | -        | -573.346563 | -         |
|-------------|----------------------------------------|-------------|----------|-------------|-----------|
|             | C(O)O <sub>2</sub> Me <sub>2</sub>     | -343.461260 | -        | -343.422684 | -         |
|             | 5 + C(O)O <sub>2</sub> Me <sub>2</sub> | -916.851822 | 0.00     | -916.769247 | 0.00      |
| Isodesmic   | lso- <b>5</b>                          | -916.847473 | 2.729037 | -916.783428 | -8.898705 |
| Ring Strain |                                        |             |          |             |           |

# Plots of $\Delta H^{\text{ROP}}$ versus monomer conversion



**Fig. S115** Plot of Δ*H*<sup>ROP</sup>, calculated as a representation of ring strain, versus monomer conversion (including monomer **1**).



Fig. S116 Plot of  $\Delta H^{ROP}$ , calculated as a representation of ring strain, versus monomer conversion (excluding monomer 1).

## 4. Polymer Degradation

## UV degradation of poly(2)



Under an argon atmosphere, a solution of poly(2) (0.030 g, 0.158 mmol, 1.0 equiv.) in THF (3.5 mL) was divided equally between 5 vacuum-tight vials. The vials were placed under UV light ( $\lambda$  = 365 nm) and taken off at predetermined intervals. All crude reaction mixtures were then subjected to <sup>1</sup>H NMR spectroscopy and SEC analysis.

| Entry | Time (h) | $M_{n,SEC}^{(a)}$ | $M_{w,SEC}^{(a)}$ | % <b>M</b> n <sup>(b)</sup> | Ð <sup>(a)</sup> |
|-------|----------|-------------------|-------------------|-----------------------------|------------------|
| 1     | 0        | 5500              | 8500              | 100                         | 1.54             |
| 2     | 0.5      | 2900              | 5500              | 53                          | 1.92             |
| 3     | 1        | 2500              | 4900              | 45                          | 1.94             |
| 4     | 2        | 1600              | 3300              | 29                          | 2.07             |
| 6     | 3        | 1400              | 2700              | 25                          | 1.90             |
| 7     | 4        | 1200              | 2500              | 22                          | 2.02             |
| 8     | 6        | 970               | 1700              | 18                          | 1.78             |

Table S8 UV degradation of poly(1).

<sup>*a*</sup>Number-average molecular weight and Dispersity ( $M_{n,SEC}$ ,  $M_{w,SEC}$ , D), calculated by SEC relative to polystyrene standards in THF eluent, units given in g mol<sup>-1</sup>; <sup>*b*</sup>Percentage of the original  $M_{n,SEC}$ .



**Fig. S117** Annotated <sup>1</sup>H NMR spectra of poly(**2**) in chloroform-d, after 6 hours of UV exposure. Loss of H-6' proton environments observed, as well as changes to integrations.



**Fig. S118** Stacked <sup>1</sup>H NMR spectra of poly(**2**) before (bottom) and after (top) 6 hours of UV irradiation ( $\lambda$  = 365 nm). Loss of H-6' environments have been highlighted.

### UV degradation of poly(4)



Under an argon atmosphere, a solution of poly(4) (0.030 g, 0.172 mmol, 1.0 equiv.) in THF (3.5 mL) was divided equally between 5 vacuum-tight vials. The vials were placed under UV light ( $\lambda$  = 365 nm) and taken off at predetermined intervals. All crude reaction mixtures were then subjected to <sup>1</sup>H NMR spectroscopy and SEC analysis.

| Entry | Time (h) | M <sub>n,SEC</sub> <sup>(a)</sup> | $M_{w,SEC}^{(a)}$ | % <i>M</i> n <sup>(b)</sup> | Ð <sup>(a)</sup> |
|-------|----------|-----------------------------------|-------------------|-----------------------------|------------------|
| 1     | 0        | 6300                              | 8200              | 100                         | 1.30             |
| 2     | 1        | 6500                              | 8400              | 103                         | 1.28             |
| 3     | 2        | 6300                              | 8200              | 100                         | 1.29             |
| 4     | 3        | 6300                              | 8100              | 100                         | 1.29             |
| 5     | 4        | 6000                              | 7600              | 95                          | 1.28             |
| 6     | 6        | <b>5</b> 600                      | 7400              | 89                          | 1.32             |

#### Table S9 UV degradation of poly(4).

<sup>*o*</sup>Number-average molecular weight and Dispersity ( $M_{n,SEC}$ ,  $M_{w,SEC}$ ,  $\mathcal{D}$ ), calculated by SEC relative to polystyrene standards in THF eluent, units given in g mol<sup>-1</sup>; <sup>*b*</sup>Percentage of the original  $M_{n,SEC}$ .



**Fig. S119** Annotated <sup>1</sup>H NMR spectra of poly(**4**) in chloroform-d, after 6 hours of UV exposure. Reduced integration observed for the H-6' proton environment.





### UV degradation of poly(5)



Under an argon atmosphere, a solution of poly(5) (0.030 g, 0.189 mmol, 1.0 equiv.) in THF (3.5 mL) was divided equally between 5 vacuum-tight vials. The vials were placed under UV light ( $\lambda$  = 365 nm) and taken off at predetermined intervals. All crude reaction mixtures were then subjected to <sup>1</sup>H NMR spectroscopy and SEC analysis.

| Entry | Time (h) | $M_{n,SEC}^{(a)}$ | $M_{w,SEC}^{(a)}$ | % <b>M</b> n <sup>(b)</sup> | Ð <sup>(a)</sup> |
|-------|----------|-------------------|-------------------|-----------------------------|------------------|
| 1     | 0        | 4900              | 5700              | 100                         | 1.16             |
| 2     | 1        | 4900              | 5800              | 100                         | 1.17             |
| 3     | 2        | 4900              | 5800              | 100                         | 1.17             |
| 4     | 3        | 4900              | 5800              | 100                         | 1.18             |
| 5     | 4        | 4900              | 5700              | 100                         | 1.17             |
| 6     | 6        | 4900              | <b>5</b> 700      | 100                         | 1.17             |

#### Table S10 UV degradation of poly(5)

<sup>*a*</sup>Number-average molecular weight and Dispersity ( $M_{n,SEC}$ ,  $M_{w,SEC}$ ,  $\mathcal{D}$ ), calculated by SEC relative to polystyrene standards in THF eluent, units given in g mol<sup>-1</sup>; <sup>*b*</sup>Percentage of the original  $M_{n,SEC}$ .



Fig. S121 Annotated <sup>1</sup>H NMR spectra of poly(5) in chloroform-d, after 6 hours of UV exposure.



**Fig. S122** Stacked <sup>1</sup>H NMR spectra of poly(**5**) before (bottom) and after (top) 6 hours of UV irradiation ( $\lambda$  = 365 nm).

### References

- 1. C. Hardy, G. Kociok-Köhn and A. Buchard, Chem. Commun., 2022, 58, 5463-5466.
- 2. Y. Kato, T. Futanaga and T. Nomura, Bioorgan. Med. Chem. Lett., 29, 664-667.
- 3. M. E. Evans and M. E. Parrish, *Carbohydr. Res.*, 1977, **54**, 105-114.
- M. J. Frisch, G. W. Frucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A.;, J. E. Peralta, F.Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 (Revision C.01), Gaussian, Inc., Wallingford CT, 2009.
- a) J. -D. Chai and M. J. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615–6620; b) J. -D. Chai and M. J. Head-Gordon, *Chem. Phys.*, 2008, **128**, 084106; c) A. Buchard, F. Jutz, M. R. Kember, A. J. P. White, H. S. Rzepa and C. K. Williams, *Macromolecules*, 2012, **45**, 6781-6795.
- 6. T. Dudev and C. Lim, J. Am. Chem. Soc., 1998, 120, 4450-4458.