# **Electronic supplementary information**

# Influences of nitrogen base excess on ARGET ATRP of styrene with ascorbic acid acetonide and traces of oxygen and water

Niccolò Braidi,\* Francesca Parenti, Giulia Scurani, Francesco Tassinari, Mirko Buffagni, Luisa

Bonifaci, Gianfranco Cavalca, Nicolò Pettenuzzo, and Franco Ghelfi

# Contents

| Preparation of stock solutions of catalyst and initiator2                                        |   |
|--------------------------------------------------------------------------------------------------|---|
| Characterizations                                                                                | ; |
| Fig. S1 – Comparison between the spectra of the catalyst after overnight reaction                | ŀ |
| Fig. S2 – Copper-catalyzed oxidation of aliphatic amines by molecular oxygen5                    | ) |
| Table S1 – ARGET ATRP promoted by tertiary amines in absence of H <sub>2</sub> AAIPI6            | ; |
| Fig. S3 – MWD of Entry 5, Table 17                                                               | , |
| Fig. S4 – Comparison between the MWDs of entries 6 and entry 10 of Table 18                      | ; |
| Fig. S5 – MWD of entry 12 of Table 19                                                            | ) |
| Fig. S6 – MWD of entry 13 of Table 110                                                           | ) |
| Fig. S7 – <sup>1</sup> H-NMR of entry 12 of Table 111                                            | • |
| Fig. S8 – <sup>1</sup> H-NMR of Entry 16 of Table 1                                              |   |
| Table S2 – Full Factorial Design of TMP-promoted ARGET ATRP of styrene with H <sub>2</sub> AAIPI | ; |

## Preparation of stock solutions of catalyst and initiator

### Preparation of CuCl<sub>2</sub>/TPMA solution in EtOH

In a 10 mL volumetric flask,  $CuCl_2$  (70.2 mg, 0.522 mmol) and TPMA (151.6 mg, 0.522 mmol) were weighted. Absolute EtOH (~9 mL) was added, and the flask sonicated to aid dissolution. More EtOH was added to the solution, up to a total volume of 10 mL.

#### Preparation of ECiB solution in EtOAc

400  $\mu$ L of ECiB (410 mg, 2.72 mmol) were added to a 10 mL volumetric flask, employing a 500  $\mu$ L microsyringe. EtOAc was added, up to a total volume of 10 mL.

#### Characterizations

#### Gel Permeation Chromatography (GPC) procedure

All samples were analyzed using a conventional GPC system. The molecular weight distributions (MWDs) were determined using a Waters GPC system composed of a Waters Alliance 2695 separation module and a Waters 2414 differential refractometer detector. Empower 2 (Waters) was used as the chromatographic analysis software. The system was calibrated with 20 narrow distribution standards of polystyrene with molecular weights ranging from 1300 Da to 7 000 000 Da. Four GPC Phenogel (Phenomenex) columns (size:  $300 \times 7.6$  mm, particle size: 5 µm, porosity  $10^6$ ,  $10^5$ ,  $10^4$ , and  $10^3$  Å) were connected and housed in an oven at 30 °C. Tetrahydrofuran for HPLC was used as a mobile phase (flow rate= 1 mL/min, injection volume= 200 µL, sample concentration =2.5 mg/mL) with toluene as the internal standard. From the MWDs the number and mass average molar masses ( $M_n$  and  $M_w$ , respectively) and subsequently dispersity ( $D = M_w/M_n$ ) were obtained.

#### Nuclear Magnetic Resonance (NMR) procedure

All NMR spectra were recorded with a Bruker AvanceNeo-600MHz spectrometer (Larmor resonance frequency for 1H: 600.10 MHz) equipped with Prodigy Platform Unit, a 5 mm cryoprobe BBO 600S3 BB-H&F-D-05 Z XT and TopSpin 4.1 software package. Typical acquisition parameters: 256 transients, spectral width 7.5 kHz, and a delay time of 7.0 s. All the spectra were acquired using CDCl<sub>3</sub> as solvent at 298 K and processed with software MestReNova. Chemical shifts were referred to tetramethylsilane peak (added to CDCl<sub>3</sub> in a concentration of 0.1% v/v) at 0.0 ppm.



Fig. S1 – Comparison between the spectra of the catalyst after overnight reaction

**Fig. S1** – UV/Vis spectra of solution containing:  $[CuCl_2/TPMA]_0$ :  $[H_2AAIPI]_0$ :  $[base]_0 = 3.3 : 16.7 : 100 mol%$  with respect to the base (50 mmol/L) in  $V_{styrene}$ :  $V_{EtOAc}$ :  $V_{EtOH} = 1.2 : 0.7 : 0.1 mL$ , after overnight reaction at 50 °C under argon.





Fig. S2 – Proposed mechanism for the copper-catalyzed oxidation of tertiary amines by molecular oxygen.

## Table S1 – ARGET ATRP promoted by tertiary amines in absence of H<sub>2</sub>AAIPI

| Table S1 - | S1 – Comparison between nitrogen bases (DBU, DIPEA, and TMP), without the addition of H <sub>2</sub> AAIPI, in the ARGET ATRP of styrene. <sup>A</sup> |                      |                |                 |          |                 |                  |      |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|-----------------|----------|-----------------|------------------|------|--|
| entry      | [TPMA]₀<br>(mol%)                                                                                                                                      | [H₂AAIPI]₀<br>(mol%) | [Base]₀ (mol%) | <i>Time</i> (h) | Conv (%) | <i>M</i> ₁(kDa) | Δ <i>M</i> n (%) | Ð    |  |
| 1          | 0.05                                                                                                                                                   | 0                    | DBU (0.50)     | 4.5             | 42       | 27.6            | + 84             | 2.61 |  |
| 2          | 0.05                                                                                                                                                   | 0                    | DIPEA (0.50)   | 4.5             | 30       | 3.45            | + 10             | 1.22 |  |
| 3          | 0.05                                                                                                                                                   | 0                    | TMP (0.50)     | 13.5            | < 1      | -               | -                | -    |  |
| 4          | 0                                                                                                                                                      | 0                    | DBU (0.50)     | 4.5             | 10       | 110.3           | + 99             | 3.00 |  |

<sup>A</sup> Common reaction conditions:  $[styrene]_0 : [ECiB]_0 : [CuCl_2]_0 = 100 \ 1.04 : 0.05 \ mol\%, V_{styrene} : V_{EtOAc} : V_{EtOH} = 6 : 3.5 : 0.5 \ mL, T = 100 \ ^{\circ}C.$ 



**Fig. S3** – MWD of **entry 5** of **Table 1**. Conditions: *V*<sub>St</sub> = 6 mL, *V*<sub>EtOAc</sub> = 3.5 mL, *V*<sub>EtOH</sub> = 0.5 mL, *T* = 100 °C (13.5 h), [styrene]<sub>0</sub>:[ECiB]<sub>0</sub>:[CuCl<sub>2</sub>/TPMA]<sub>0</sub>:[H<sub>2</sub>AAIPI]<sub>0</sub>:[Na<sub>2</sub>CO<sub>3</sub>]<sub>0</sub> = 100:1.04:0.025:0.25:0.25.

## Fig. S4 – Comparison between the MWDs of entries 6 and entry 10 of Table 1.



**Fig. S4** – MWDs of polystyrene obtained by ARGET ATRP with H<sub>2</sub>AAIPI and DBU. *Blue*) **entry 6**, **Table 1**. *Orange*) **entry 10**, **Table 1**.



**Fig. S5** – MWD of **entry 12** of **Table 1**. Conditions: *V*<sub>styrene</sub> = 6 mL, *V*<sub>EtOAc</sub> = 3.5 mL, *V*<sub>EtOH</sub> = 0.5 mL, *T* = 100 °C (13.5 h), [styrene]<sub>0</sub>:[ECiB]<sub>0</sub>:[CuCl<sub>2</sub>/TPMA]<sub>0</sub>:[H<sub>2</sub>AA]<sub>0</sub>:[DIPEA]<sub>0</sub> = 100:1.04:0.025:0.125:0.25.

## Fig. S6 – MWD of entry 13 of Table 1



**Fig. S6** – MWD of **entry 13** of **Table 1**. Conditions: *V*<sub>styrene</sub> = 12 mL, *V*<sub>EtOAc</sub> = 3.5 mL, *V*<sub>EtOH</sub> = 0.5 mL, *T* = 100 °C (24 h), [styrene]<sub>0</sub>:[ECiB]<sub>0</sub>:[CuCl<sub>2</sub>/TPMA]<sub>0</sub>:[H<sub>2</sub>AAIPI]<sub>0</sub>:[DIPEA]<sub>0</sub> = 100:0.52:0.0125:0.125:0.25.





**Fig. S7** – <sup>1</sup>H-NMR of **entry 12** of **Table 1**. Conditions:  $V_{\text{styrene}} = 6 \text{ mL}$ ,  $V_{\text{EtOAc}} = 3.5 \text{ mL}$ ,  $V_{\text{EtOH}} = 0.5 \text{ mL}$ ,  $T = 100 ^{\circ}\text{C}$  (13.5 h), [styrene]<sub>0</sub>:[ECiB]<sub>0</sub>:[CuCl<sub>2</sub>/TPMA]<sub>0</sub>:[H<sub>2</sub>AA]<sub>0</sub>:[DIPEA]<sub>0</sub> = 100:1.04:0.025:0.125:0.25.





**Fig. S8** – <sup>1</sup>H-NMR of the reaction conditions:  $V_{St} = 6 \text{ mL}$ ,  $V_{EtOAc} = 3.5 \text{ mL}$ ,  $V_{EtOH} = 0.5 \text{ mL}$ , T = 100 °C (24 h), [Styrene]<sub>0</sub>:[ECiB]<sub>0</sub>:[CuCl<sub>2</sub>/TPMA]<sub>0</sub>:[H<sub>2</sub>AAIPI]<sub>0</sub>:[TMP]<sub>0</sub> = 100:1.04:0.025:0.25:1.5.

| Table S2 – Full factorial design of TMP-promoted ARGET ATRP of styrene with H <sub>2</sub> AAIPI |                         |                             |                                  |                    |             |                     |                     |      |
|--------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|----------------------------------|--------------------|-------------|---------------------|---------------------|------|
| entry                                                                                            | [CuCl₂/TPMA]₀<br>(mol%) | [benzalchloride]₀<br>(mol%) | [H₂AAIPI]₀/[TMP]₀<br>(mol%/mol%) | <i>Time</i><br>(h) | Conv<br>(%) | <i>M</i> ₅<br>(kDa) | ∆ <i>M</i> n<br>(%) | Ð    |
| 1                                                                                                | 0.0625                  | 1                           | 0.125/0.750                      | 20                 | 50.9        | 5.25                | - 4.43              | 1.33 |
| 2 <sup>B</sup>                                                                                   | 0.0625                  | 1                           | 0.250/1.50                       | 25                 | 59.3        | 6.41                | + 0.14              | 1.32 |
| 3                                                                                                | 0.250                   | 1                           | 0.250/1.50                       | 20                 | 53.6        | 6.00                | + 3.92              | 1.15 |
| 4                                                                                                | 0.250                   | 1                           | 0.125/0.750                      | 25                 | 53.1        | 5.32                | - 7.38              | 1.15 |
| 5                                                                                                | 0.0625                  | 2                           | 0.250/1.50                       | 20                 | 51.9        | 3.26                | + 11.8              | 1.32 |
| 6                                                                                                | 0.0625                  | 2                           | 0.125/0.750                      | 25                 | 50.5        | 3.32                | + 15.6              | 1.30 |
| 7 <sup>B</sup>                                                                                   | 0.250                   | 2                           | 0.125/0.750                      | 20                 | 39.8        | 2.40                | + 6.68              | 1.14 |
| 8                                                                                                | 0.250                   | 2                           | 0.250/1.50                       | 25                 | 54.0        | 2.88                | - 3.60              | 1.14 |
| 9 <sup> в</sup>                                                                                  | 0.250                   | 1                           | 0.250/1.50                       | 25                 | 57.6        | 5.02                | - 23.2              | 1.17 |
| 10                                                                                               | 0.250                   | 2                           | 0.250/1.50                       | 20                 | 48.5        | 2.58                | -4.51               | 1.16 |
| 11                                                                                               | 0.250                   | 2                           | 0.125/0.750                      | 25                 | 46.2        | 2.48                | - 3.87              | 1.16 |
| 12                                                                                               | 0.0625                  | 1                           | 0.125/0.750                      | 25                 | 51.0        | 4.75                | - 15.6              | 1.35 |
| 13                                                                                               | 0.250                   | 1                           | 0.125/0.750                      | 20                 | 46.3        | 4.05                | - 23.5              | 1.18 |
| 14 <sup>B</sup>                                                                                  | 0.0625                  | 2                           | 0.250/1.50                       | 25                 | 54.3        | 3.49                | + 14.1              | 1.32 |
| 15                                                                                               | 0.0625                  | 2                           | 0.125/0.750                      | 20                 | 38.0        | 2.90                | + 26.0              | 1.33 |
| 16                                                                                               | 0.0625                  | 1                           | 0.250/1.50                       | 20                 | 51.3        | 4.85                | - 13.9              | 1.35 |
| 17                                                                                               | 0.156                   | 1.5                         | 0.188/1.13                       | 22.5               | 50.5        | 3.27                | - 12.5              | 1.21 |
| 18                                                                                               | 0.156                   | 1.5                         | 0.188/1.13                       | 22.5               | 52.2        | 3.71                | - 2.40              | 1.20 |

## Table S2 – Full Factorial Design of TMP-promoted ARGET ATRP of styrene with H<sub>2</sub>AAIPI

<sup>A</sup> Common reaction conditions:  $V_{\text{styrene}}$ :  $V_{\text{EtOAc}}$ :  $V_{\text{EtOH}}$  = 6 : 3.5 : 0.5 mL, T = 100 °C. <sup>B</sup> The reaction has been conducted twice and the mean values are reported.