Supplementary Information

Enhancement of Thermomechanical Properties of Sulfur-rich Polymers by Post-Thermal Treatment

Nara Han^{a, b,‡}, Woongbi Cho^{c,‡}, Jae Hyuk Hwang^d, Sukyoung Won^{a,e}, Dong-Gyun Kim^{d,j,*} and Jeong Jae Wie^{b,c,g,h,i,j,*}

^aProgram in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea

^bDepartment of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA

^cDepartment of Organic and Nano Engineering, Hanyang University, 222 Wangsimmni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

^dAdvanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea

^eThe Research Institute of Industrial Science, Hanyang University, 222 Wangsimmni-ro, Seongdonggu, Seoul 04763, Republic of Korea

^fAdvanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea

^gHuman-Tech Convergence Program, Hanyang University, 222 Wangsimmni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

^hInstitute of Nano Science and Technology, Hanyang University, 222 Wangsimmni-ro, Seongdong-gu, Seoul 04763 Republic of Korea

ⁱDepartment of Chemical Engineering, Hanyang University, 222 Wangsimmni-ro, Seongdong-gu, Seoul 04763 Republic of Korea

^jThe Michael M. Szwarc Polymer Research Institute, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210 USA

‡These authors contributed equally to this work.

*Corresponding Authors, E-mail address: jjwie@hanyang.ac.kr, dgkim@krict.re.kr

Figure S1. Synthesis process of poly(sulfur-random-divinylbenzene) (poly(S₇₀-r-DVB₃₀)).

Figure S2. TGA thermograms of neat $poly(S_{70}-r-DVB_{30})$ and $poly(S_{70}-r-DVB_{30})$ thermally treated at 140 °C for 12, 24, and 48 h.

Figure S3. EDX data on the surface of neat $poly(S_{70}-r-DVB_{30})$ and $poly(S_{70}-r-DVB_{30})$ thermally treated at 140 °C for 12, 24, and 48 h.

Figure S4. Digital images of a) $poly(S_{70}-r-DVB_{30})$ chunk, b) $poly(S_{70}-r-DVB_{30})$ powder before thermal treatment, c) $poly(S_{70}-r-DVB_{30})$ film before thermal treatment, d) $poly(S_{70}-r-DVB_{30})$ powder after thermal treatment. Scale bars, 1 cm.

Figure S5. FT-IR transmittance data according to position in one poly(S₇₀-*r*-DVB₃₀) film.

Figure S6. Digital image of thermally degraded material during thermal treatment.

Figure S7. Carbon, hydrogen, and sulfur content of neat poly(S₇₀-*r*-DVB₃₀) and poly(S₇₀-*r*-DVB₃₀) thermally treated at 140 °C.

Figure S8. Deconvolution of FT-IR spectra of $poly(S_{70}-r-DVB_{30})$ films thermally treated at 110 °C for different treatment times: a) No thermally treated, b) 2 h, c) 12 h, d) 48 h.

Figure S9. Deconvolution of FT-IR spectra of $poly(S_{70}-r-DVB_{30})$ films thermally treated at 140 °C, 170 °C for each treatment time.

Figure S10. FT-IR transmittance spectra of a) thermal treatment at 110 °C, b) 140 °C, c) 170 °C from 3400 to 2000 cm⁻¹. The average thickness of films is 164 μ m. d) The transmittance at 4 μ m of annealed poly(S₇₀-*r*-DVB₃₀) films was measured by FT-IR. Variation in transmittance according to thermal treatment time and temperature.

Figure S11. DMA curves of $poly(S_{70}-r-DVB_{30})$ films thermally treated at 110 °C for a) 1 h, b) 2 h, c) 6 h, d) 12 h, e) 24 h, f) 48 h.

Figure S12. DMA curves of $poly(S_{70}-r-DVB_{30})$ films thermally treated at 140 °C for a) 1 h, b) 2 h, c) 6 h, d) 12 h, e) 24 h, f) 48 h.

Figure S13. a) DMA curves of $poly(S_{70}-r-DVB_{30})$ film without thermal treatment. DMA curves of $poly(S_{70}-r-DVB_{30})$ films thermally treated at 170 °C for b) 1 h, c) 2 h, d) 6 h.

Figure S14. Degradation temperatures (2% weight loss) of neat $poly(S_{70}-r-DVB_{30})$ and $poly(S_{70}-r-DVB_{30})$ thermally treated at 140 °C for 12, 24, and 48 h.

Figure S15. Measured T_g by maximum tan δ from DMA results. Samples treated at 170 °C for more than 12 h were crushed during the clamping and their elastic modulus could not be measured.