Supporting Information

Synthesis of a renewable bisguaiacol amide and its hydrogen bonding effect on enhancing polybenzoxazine performance

Haoran Sun, Junyi Jiang, Yanglei Zheng, Shuangfei Xiang, Shujun Zhao,

Feiya Fu, Xiangdong Liu^{a*}

Institute of Composite Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

*Corresponding Author: Xiangdong Liu, E-mail address: <u>liuxd@zstu.edu.cn (X.</u>

<u>Liu).</u>

Supporting information

Equation S1. The apparent activation energy (E_a) calculated by Kissinger method.

Equation S2. The apparent activation energy (E_a) calculated by Ozawa method.

Table S1. The ¹H NMR data of benzoxazines.

Figure S1. FTIR spectra of BGA and BGE.

Figure S2. FTIR spectra of BGA-fa and BGE-fa.

Figure S3. Optical image of a) BGA, b) BGE, c) BGA-fa and d) BGE-fa.

Figure S4. Plots for calculate the Ea of BGA-fa using Kissinger method.

Figure S5. Plots for calculate the Ea of BGA-fa using Ozawa method.

Figure S6. Plots for calculate the Ea of BGE-fa using Kissinger method.

Figure S7. Plots for calculate the Ea of BGE-fa using Ozawa method.

Figure S8. DSC thermograms of BGE-fa during the step-by-step polymerization reaction.

Figure S9. FTIR spectra of BGE-fa during step by step polymerization reaction.

Figure S10. DSC thermograms of BGA-fa catalyzed by 10 wt% PTSM.

Figure S11. DSC thermograms of BGE-fa catalyzed by 10 wt% PTSM.

*Corresponding author.

E-mail address: liuxd@zstu.edu.cn (Xiangdong Liu),

Figure S12. TGA curves of bisguaicols.

Figure S13. GC spectrum of the poly(BGA-fa) decomposed at 300 °C.

Figure S14. GC spectrum of the poly(BGA-fa) decomposed at 340 °C.

Figure S15. GC spectrum of the poly(BGA-fa) decomposed at 380 °C.

Figure S16. GC spectrum of the poly(BGA-fa) decomposed at 420 °C.

Figure S17. GC spectrum of the poly(BGE-fa) decomposed at 300 °C.

Figure S18. GC spectrum of the poly(BGE-fa) decomposed at 340 °C.

Figure S19. GC spectrum of the poly(BGE-fa) decomposed at 380 °C.

Figure S20. GC spectrum of the poly(BGE-fa) decomposed at 420 °C.

Figure S21. Stress-strain curves of the composites reinforced with cotton fabrics.

Figure S22. Stress-strain curves of the composites reinforced with glass fiber.

Equations for calculating Ea of the polymerization

The apparent activation energy (E_a) of the polymerization was calculated basing on the following well-known Kissinger (eq S1) and the modified Ozawa (eq S2) methods.

$$-\ln\left(\frac{\beta}{T_p^2}\right) = \frac{E_a}{RT_p} - \ln\left(\frac{AR}{E_a}\right)$$

 $ln\beta = -1.052 \times \frac{E_a}{RT_p} + C$

where β is the heating rate, the exothermic peak temperature is T_p , and R is the gas constant.

Table S1 The ¹ H NMR data of benzoxazines		
$9 \stackrel{*}{\underset{10}{}} \stackrel{4}{\underset{0}{}} \stackrel{2}{\underset{0}{}} \stackrel{6}{\underset{0}{}} \stackrel{1}{\underset{0}{}} \stackrel{6}{\underset{0}{}} \stackrel{2}{\underset{0}{}} \stackrel{4}{\underset{0}{}} \stackrel{2}{\underset{0}{}} \stackrel{4}{\underset{0}{}} \stackrel{1}{\underset{0}{}} \stackrel{6}{\underset{0}{}} \stackrel{2}{\underset{0}{}} \stackrel{4}{\underset{0}{}} \stackrel{0}{\underset{0}{}} \stackrel{1}{\underset{0}{}} \stackrel{6}{\underset{0}{}} \stackrel{2}{\underset{0}{}} \stackrel{1}{\underset{0}} \stackrel{6}{\underset{0}{}} \stackrel{2}{\underset{0}{}} \stackrel{1}{\underset{0}} \stackrel{6}{\underset{0}{}} \stackrel{2}{\underset{0}} \stackrel{1}{\underset{0}} \stackrel{6}{\underset{0}} \stackrel{2}{\underset{0}} \stackrel{1}{\underset{0}} \stackrel{6}{\underset{0}} \stackrel{2}{\underset{0}} \stackrel{1}{\underset{0}} \stackrel{1}{\underset{0}} \stackrel{6}{\underset{0}} \stackrel{2}{\underset{0}} \stackrel{1}{\underset{0}} \overset{1}{\underset{0}} \overset{1}$		
Proton number	Chemical shift (ppm) and integrated areas	
	BGA-fa	BGE-fa
1	4.51 (2.00)	5.23 (2.00)
2; 2'	4.00; 4.02 (4.00)	4.05; 4.06 (4.00)
3; 3'	4.97; 5.03 (3.98)	5.01; 5.09 (4.04)
4; 4', 5; 5'	3.92-3.94 (10.06)	3.92-3.97 (9.96)
6; 6'	6.76 (0.96); 7.32 (1.02)	6.88(0.98); 7.51 (1.02)
7; 7'	6.57 (0.96); 6.96 (0.98)	6.71(1.00); 6.97 (0.94)
8; 8'	7.41 (1.98)	7.44 (2.00)
9; 9', 10; 10'	6.26-6.33 (4.08)	6.28-6.36 (4.04)

Figure S1 FTIR spectra of BGA and BGE.

Figure S2 FTIR spectra of BGA-fa and BGE-fa.

Figure S3 Optical image of a) BGA, b) BGE, c) BGA-fa and d) BGE-fa.

Figure S4 Plots for calculate the Ea of BGA-fa using Kissinger method.

Figure S5 Plots for calculate the Ea of BGA-fa using Ozawa method.

Figure S6 Plots for calculate the Ea of BGE-fa using Kissinger method.

Figure S7 Plots for calculate the Ea of BGE-fa using Ozawa method.

Figure S8 DSC thermograms of BGE-fa during the step-by-step polymerization reaction.

Figure S9 FTIR spectra of BGE-fa during step by step polymerization reaction

Figure S10 DSC thermograms of BGA-fa catalyzed by 10 wt% PTSM.

Figure S11 DSC thermograms of BGE-fa catalyzed by 10 wt% PTSM.

Figure S12 TGA curves of bisguaicols.

Figure S13 GC spectrum of the poly(BGA-fa) decomposed at 300 °C.

Figure S14 GC spectrum of the poly(BGA-fa) decomposed at 340 °C.

Figure S15 GC spectrum of the poly(BGA-fa) decomposed at 380 °C.

Figure S16 GC spectrum of the poly(BGA-fa) decomposed at 420 °C.

Figure S17 GC spectrum of the poly(BGE-fa) decomposed at 300 °C.

Figure S18 GC spectrum of the poly(BGE-fa) decomposed at 340 $^{\circ}\mathrm{C}$

Figure S19 GC spectrum of the poly(BGE-fa) decomposed at 380 °C.

Figure S20 GC spectrum of the poly(BGE-fa) decomposed at 420 °C.

Figure S21 Stress-strain curves of the composites reinforced with cotton fabrics.

Figure S22 Stress-strain curves of the composites reinforced with glass fiber.