# **Supplementary Information**

# Photo-responsive lignin fragment-based polymers as switchable adhesives

Pallabi Sinha Roy,<sup>a,b</sup> Matthieu M. Mention,<sup>c</sup> Antonio F. Patti,<sup>a,b</sup> Gil Garnier,<sup>\*b,c</sup> Florent Allais<sup>\*+b,c</sup> and Kei Saito<sup>\*+d</sup>

<sup>a.</sup> School of Chemistry, Monash University, Clayton VIC 3800, Australia. <sup>b.</sup> Department of Chemical Engineering, Bioresources Processing Research Institute of Australia (BioPRIA), Monash University, Clayton VIC 3800, Australia. <sup>c.</sup> URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France. <sup>d.</sup> Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Higashi-Ichijo-Kan, Yoshida-nakaadachicho 1, Sakyo-ku, Kyoto, 606-8306, Japan, <sup>+</sup> K. Saito and F. Allais contributed equally to this work.

## **Table of Contents**

| 1. | <sup>1</sup> H and <sup>13</sup> C NMR spectra of the synthesized monomers                                         | 3     |
|----|--------------------------------------------------------------------------------------------------------------------|-------|
|    | Figure S1. <sup>1</sup> H NMR spectrum of M-PA-1 in DMSO-d <sub>6</sub> .                                          | 4     |
|    | Figure S2. <sup>13</sup> C NMR spectrum of M-PA-1 in DMSO-d <sub>6</sub> .                                         | 6     |
|    | Figure S3. <sup>1</sup> H NMR spectrum of M-PA-2 in DMSO-d <sub>6</sub> .                                          | 7     |
|    | Figure S4. <sup>13</sup> C NMR spectrum of M-PA-2 in DMSO-d <sub>6</sub>                                           | 8     |
|    | Figure S5. <sup>1</sup> H NMR spectrum of M-PA-3 in DMSO-d <sub>6</sub> .                                          | 9     |
|    | Figure S6. <sup>1</sup> H NMR spectrum of M-PA-4 in DMSO-d <sub>6</sub> .                                          | 11    |
|    | Figure S7. <sup>1</sup> H NMR spectrum of M-PA-5 in DMSO-d <sub>6</sub> .                                          | 12    |
|    | Figure S8. <sup>1</sup> H NMR spectrum of M-PA-6 in DMSO-d <sub>6</sub> .                                          | 13    |
| 2. | Comparison of FTIR spectra for compound PA-1 before crosslinking and at crosslinked and decrosslinked state        | 14    |
|    | Figure S9. FTIR spectra for PA-1 at monomer, crosslinked and decrosslinked state                                   | 14    |
| 3. | UV-Vis spectra for crosslinking and decrosslinking of compounds PA-1 to PA-6                                       | 14    |
|    | Figure S10. UV-Vis spectra for PA-1. (a) Crosslinking at 365 nm (96%). (b) Decrosslinking at 254 nm (35%)          | 14    |
|    | Figure S11. UV-Vis spectra for PA-2. (a) Crosslinking at 365 nm (97%). (b) Decrosslinking at 254 nm (35%)          | 15    |
|    | Figure S12. UV-Vis spectra for PA-3. (a) Crosslinking at 365 nm (89%). (b) Decrosslinking at 254 nm (24%)          | 15    |
|    | Figure S13. UV-Vis spectra for PA-4. (a) Crosslinking at 365 nm (87%). (b) Decrosslinking at 254 nm (22%)          | 15    |
|    | Figure S14. UV-Vis spectra for PA-5. (a) Crosslinking at 365 nm (89%). (b) Decrosslinking at 254 nm (39%)          | 16    |
|    | Figure S15. UV-Vis spectra for PA-6. (a) Crosslinking at 365 nm (90%). (b) Decrosslinking at 254 nm (36%)          | 16    |
|    | Figure S16. Crosslinking % calculated using UV-Vis spectra for PA-1 to PA-6 with respect to 365 nm irradiation tir | ne 16 |
|    | Figure S17. Comparison of decrosslinking % calculated using UV-Vis spectra and the 254 nm irradiation time at w    | vhich |
|    | maximum decrosslinking observed for PA-1 to PA-6.                                                                  | 17    |
| 4. | Thermogravimetric analysis (TGA) data of polymer adhesive PA-1 to PA-6                                             | 17    |
|    | Figure S18. Thermogravimetric analysis data for polymer adhesive PA-1.                                             | 17    |
|    | Figure S19. Thermogravimetric analysis data for polymer adhesive PA-2.                                             | 18    |
|    | Figure S20. Thermogravimetric analysis data for polymer adhesive PA-3.                                             | 18    |
|    | Figure S21. Thermogravimetric analysis data for polymer adhesive PA-4.                                             | 19    |
|    | Figure S22. Thermogravimetric analysis data for polymer adhesive PA-5.                                             | 19    |
|    | Figure S23. Thermogravimetric analysis data for polymer adhesive PA-6.                                             | 20    |
| 5. | Glass transition temperature of polymer adhesive PA-1 to PA-6                                                      | 20    |
|    | Figure S24. Glass transition temperature for polymer adhesive PA-1 at crosslinked state.                           | 20    |
|    | Figure S25. Glass transition temperature for polymer adhesive PA-1 at decrosslinked state.                         | 21    |
|    | Figure S26. Glass transition temperature for polymer adhesive PA-2 at crosslinked state.                           | 21    |
|    | Figure S27. Glass transition temperature for polymer adhesive PA-2 at decrosslinked state.                         | 22    |
|    | Figure S28. Glass transition temperature for polymer adhesive PA-3 at crosslinked state.                           | 22    |
|    | Figure S29. Glass transition temperature for polymer adhesive PA-3 at decrosslinked state.                         |       |

|                | Figure S30. Glass transition temperature for polymer adhesive PA-4 at crosslinked state.                                                                                                                                                                                                                                                                                                                           | 23                   |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                | Figure S31. Glass transition temperature for polymer adhesive PA-4 at decrosslinked state.                                                                                                                                                                                                                                                                                                                         | 24                   |
|                | Figure S32. Glass transition temperature for polymer adhesive PA-5 at crosslinked state.                                                                                                                                                                                                                                                                                                                           | 24                   |
|                | Figure S33. Glass transition temperature for polymer adhesive PA-5 at decrosslinked state.                                                                                                                                                                                                                                                                                                                         | 25                   |
|                | Figure S34. Glass transition temperature for polymer adhesive PA-6 at crosslinked state.                                                                                                                                                                                                                                                                                                                           | 25                   |
|                | Figure S35. Glass transition temperature for polymer adhesive PA-6 at decrosslinked state.                                                                                                                                                                                                                                                                                                                         | 26                   |
| _              | Additional adhesive lan shear strength testing results for polymer adhesive PA-1                                                                                                                                                                                                                                                                                                                                   |                      |
| 6.             | Authonal autorive lap shear strength testing results for poryhier auteorive rive zimining international                                                                                                                                                                                                                                                                                                            |                      |
| 6.             | <b>Figure S36.</b> Reversibility test for the lap shear strength at 1.5 M concentration irradiated with 365 nm and 254                                                                                                                                                                                                                                                                                             | nm respectively.     |
| 6.             | <b>Figure S36.</b> Reversibility test for the lap shear strength at 1.5 M concentration irradiated with 365 nm and 254                                                                                                                                                                                                                                                                                             | nm respectively.     |
| 6.<br>7.       | Figure S36. Reversibility test for the lap shear strength at 1.5 M concentration irradiated with 365 nm and 254                                                                                                                                                                                                                                                                                                    | nm respectively.<br> |
| 6.<br>7.       | Figure S36. Reversibility test for the lap shear strength at 1.5 M concentration irradiated with 365 nm and 254 Design of experiment Figure S37. D-optimal coefficients of the quadratic model for the Lap Shear Strength                                                                                                                                                                                          | nm respectively.<br> |
| 6.<br>7.       | <ul> <li>Figure S36. Reversibility test for the lap shear strength at 1.5 M concentration irradiated with 365 nm and 254</li> <li>Design of experiment</li> <li>Figure S37. D-optimal coefficients of the quadratic model for the Lap Shear Strength</li> <li>Figure S38. Reversibility test for the lap shear strength value at 1 M concentration irradiated with 365 nm and 254</li> </ul>                       | nm respectively.<br> |
| 6.<br>7.       | Figure S36. Reversibility test for the lap shear strength at 1.5 M concentration irradiated with 365 nm and 254 Design of experiment Figure S37. D-optimal coefficients of the quadratic model for the Lap Shear Strength. Figure S38. Reversibility test for the lap shear strength value at 1 M concentration irradiated with 365 nm and 2 respectively.                                                         | nm respectively.<br> |
| 6.<br>7.<br>8. | Figure S36. Reversibility test for the lap shear strength at 1.5 M concentration irradiated with 365 nm and 254 Design of experiment Figure S37. D-optimal coefficients of the quadratic model for the Lap Shear Strength Figure S38. Reversibility test for the lap shear strength value at 1 M concentration irradiated with 365 nm and 2 for respectively. Optical microscope images for failure mode analysis. | 26<br>               |

1. <sup>1</sup>H and <sup>13</sup>C NMR spectra of the synthesized monomers



Figure S1. <sup>1</sup>H NMR spectrum of M-PA-1 in DMSO-d<sub>6</sub>.



Figure S2. <sup>13</sup>C NMR spectrum of M-PA-1 in DMSO-d<sub>6</sub>.



Figure S3. <sup>1</sup>H NMR spectrum of M-PA-2 in DMSO-d<sub>6</sub>.



Figure S4. <sup>13</sup>C NMR spectrum of M-PA-2 in DMSO-d<sub>6</sub>.



Figure S5. <sup>1</sup>H NMR spectrum of M-PA-3 in DMSO-d<sub>6</sub>.



Figure S6. <sup>1</sup>H NMR spectrum of M-PA-4 in DMSO-d<sub>6</sub>.



Figure S7. <sup>1</sup>H NMR spectrum of M-PA-5 in DMSO-d<sub>6</sub>.



Figure S8. <sup>1</sup>H NMR spectrum of M-PA-6 in DMSO-d<sub>6</sub>.



#### 2. Comparison of FTIR spectra for compound PA-1 before crosslinking and at crosslinked and decrosslinked state

Figure S9. FTIR spectra for PA-1 at monomer, crosslinked and decrosslinked state.

### 3. UV-Vis spectra for crosslinking and decrosslinking of compounds PA-1 to PA-6



Figure S10. UV-Vis spectra for PA-1. (a) Crosslinking at 365 nm (96%). (b) Decrosslinking at 254 nm (35%).



Figure S11. UV-Vis spectra for PA-2. (a) Crosslinking at 365 nm (97%). (b) Decrosslinking at 254 nm (35%).



Figure S12. UV-Vis spectra for PA-3. (a) Crosslinking at 365 nm (89%). (b) Decrosslinking at 254 nm (24%).



Figure S13. UV-Vis spectra for PA-4. (a) Crosslinking at 365 nm (87%). (b) Decrosslinking at 254 nm (22%).



Figure S14. UV-Vis spectra for PA-5. (a) Crosslinking at 365 nm (89%). (b) Decrosslinking at 254 nm (39%).



Figure S15. UV-Vis spectra for PA-6. (a) Crosslinking at 365 nm (90%). (b) Decrosslinking at 254 nm (36%).



Figure S16. Crosslinking % calculated using UV-Vis spectra for PA-1 to PA-6 with respect to 365 nm irradiation time.



**Figure S17.** Comparison of decrosslinking % calculated using UV-Vis spectra and the 254 nm irradiation time at which maximum decrosslinking observed for PA-1 to PA-6.

### 4. Thermogravimetric analysis (TGA) data of polymer adhesive PA-1 to PA-6



Figure S18. Thermogravimetric analysis data for polymer adhesive PA-1.



Figure S19. Thermogravimetric analysis data for polymer adhesive PA-2.



Figure S20. Thermogravimetric analysis data for polymer adhesive PA-3.



Figure S21. Thermogravimetric analysis data for polymer adhesive PA-4.



Figure S22. Thermogravimetric analysis data for polymer adhesive PA-5.



Figure S23. Thermogravimetric analysis data for polymer adhesive PA-6.

### 5. Glass transition temperature of polymer adhesive PA-1 to PA-6



Figure S24. Glass transition temperature for polymer adhesive PA-1 at crosslinked state.



Figure S25. Glass transition temperature for polymer adhesive PA-1 at decrosslinked state.



Figure S26. Glass transition temperature for polymer adhesive PA-2 at crosslinked state.



Figure S27. Glass transition temperature for polymer adhesive PA-2 at decrosslinked state.



Figure S28. Glass transition temperature for polymer adhesive PA-3 at crosslinked state.



Figure S29. Glass transition temperature for polymer adhesive PA-3 at decrosslinked state.



Figure S30. Glass transition temperature for polymer adhesive PA-4 at crosslinked state.



Figure S31. Glass transition temperature for polymer adhesive PA-4 at decrosslinked state.



Figure S32. Glass transition temperature for polymer adhesive PA-5 at crosslinked state.



Figure S33. Glass transition temperature for polymer adhesive PA-5 at decrosslinked state.



Figure S34. Glass transition temperature for polymer adhesive PA-6 at crosslinked state.



Figure S35. Glass transition temperature for polymer adhesive PA-6 at decrosslinked state.

## 6. Additional adhesive lap shear strength testing results for polymer adhesive PA-1



Figure S36. Reversibility test for the lap shear strength at 1.5 M concentration irradiated with 365 nm and 254 nm respectively.

#### 7. Design of experiment

| Table S1. Design of Experiments for | or the adhesive strength |
|-------------------------------------|--------------------------|
|-------------------------------------|--------------------------|

| Exp. No. | Exp. Name | Run Order | Incl/Excl | Molar Concentration<br>(mol/L) | Irradiation Time<br>(min) | e Lap Shear<br>Strength (MPa) |
|----------|-----------|-----------|-----------|--------------------------------|---------------------------|-------------------------------|
| 1        | N1        | 1         | Incl      | 0.125                          | 5                         | 0                             |
| 2        | N2        | 6         | Incl      | 1                              | 5                         | 0.1                           |
| 3        | N3        | 7         | Incl      | 0.125                          | 120                       | 0                             |
| 4        | N4        | 14        | Incl      | 1                              | 120                       | 1.57                          |

| 5  | N5  | 5  | Excl | 0.125    | 43.3333 | O <sup>a</sup> |
|----|-----|----|------|----------|---------|----------------|
| 6  | N6  | 4  | Excl | 1        | 43.3333 | O <sup>a</sup> |
| 7  | N7  | 11 | Incl | 1        | 81.6667 | 1.55           |
| 8  | N8  | 8  | Incl | 0.416667 | 5       | 0.08           |
| 9  | N9  | 9  | Incl | 0.708333 | 5       | 0.23           |
| 10 | N10 | 10 | Incl | 0.708333 | 120     | 1.11           |
| 11 | N11 | 2  | Incl | 0.5625   | 62.5    | 0.87           |
| 12 | N12 | 12 | Incl | 0.5625   | 62.5    | 0.9            |
| 13 | N13 | 13 | Incl | 0.5625   | 62.5    | 0.92           |
| 14 | N14 | 3  | Incl | 0.5625   | 62.5    | 0.99           |
|    |     |    |      |          |         |                |

<sup>a</sup> abnormal value excluded of the DoE





## Table S2. Analysis of variance (ANOVA) for the model.

|                    |                            | Mean Squares        |            |         |            |           |
|--------------------|----------------------------|---------------------|------------|---------|------------|-----------|
| Lap Shear Strength | Degrees of<br>Freedom (DF) | Sum of Squares (SS) | (MS)       | F-Value | p-Value    | Deviation |
|                    |                            |                     | Variance   |         |            | (SD)      |
| Total              | 12                         | 9.5622              | 0.79685    |         |            |           |
| Constant           | 1                          | 5.76853             | 5.76853    |         |            |           |
| Total corrected    | 11                         | 3.79367             | 0.344879   |         |            | 0.587264  |
| Regression         | 4                          | 3.766               | 0.9415     | 238.2   | <b>0</b> a | 0.970309  |
| Residual           | 7                          | 0.0276679           | 0.00395255 |         |            | 0.0628693 |

| Lack of Fit<br>(Model error)    | 4      | 0.0198679                                              |                | 0.00496697 | 1.91037                                      | <b>0.311</b> <sup>b</sup> | 0.0704767 |
|---------------------------------|--------|--------------------------------------------------------|----------------|------------|----------------------------------------------|---------------------------|-----------|
| Pure error<br>(Replicate error) | 3      | 0.0078                                                 |                | 0.0026     |                                              |                           | 0.0509902 |
|                                 | N = 12 | Q <sup>2</sup> =                                       | 0.969          |            | Cond. no. =                                  | 3.02                      |           |
|                                 | DF = 7 | R <sup>2</sup> =<br>R <sup>2</sup> adj. <sup>c</sup> = | 0.993<br>0.989 |            | Relative<br>Standard<br>Deviation<br>(RSD) = | 0.06287                   |           |

<sup>a</sup> Significance of the model at 95% confidence level

 $^{b}$  p > 0.05 no lack of fit

<sup>c</sup> R<sup>2</sup> adjusted for degree of freedom



Figure S38. Reversibility test for the lap shear strength value at 1 M concentration irradiated with 365 nm and 254 nm respectively.

8. Optical microscope images for failure mode analysis



Figure S39. Failure analysis for all the polymer adhesive structures PA-1 to PA-6.