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Materials and Methods

All synthesis and manipulations of air- and moisture-sensitive materials were carried out in an
argon-filled glovebox. All reagents from Adamas-beta and Energy Chemical were used as
received unless otherwise stated. High-performance liquid chromatography (HPLC)-grade
organic solvents were dried by Vigor YJC-5 and then stored over activated 4 A molecular
sieves. The initiator p-tolylmethanol was purchased from adamas and sublimed at 55 °C prior
to use. 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was sublimed under vacuum at 60 °C prior
to use. 2,6-diethylphenyl substituted B-diiminate zinc trimethylsilyl complex Zn1 was prepared

according to literature procedures.!"!

N —

(\N/j ( Zn—N(TMS),
_ N
N)\H ) N

TBD Zn1

NMR "H and "®C NMR spectra were recorded on an Agilent 400-MR DD2 or a Briiker Advance
400 spectrometer ('H: 400 MHz, '3C: 100 MHz). Chemical shifts (8) for 'H and '*C NMR
spectra are given in ppm relative to TMS. The residual solvent signals were used as
references for '"H and '*C NMR spectra and the chemical shifts converted to the TMS scale
The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t =
triplet, q = quartet, m = multiplet.

Size Exclustion Chromatography (SEC) Measurements of polymer absolute weight-
average molecular weight (M), number average molecular weight (M,), and molecular weight
distributions or dispersity indices (P = M./M,) were performed via size exclusion
chromatography (SEC). The SEC instrument consisted of an Agilent LC system equipped with
one guard column and two PL gel 5 um mixed-C gel permeation columns and coupled with an
Agilent G7162A 1260 Infinity Il RI detector. The analysis was performed at 40 °C using THF
as the eluent at a flow rate of 1.0 mL/min. The instrument was calibrated with nine polystyrene
standards, and chromatograms were processed with Agilent OpenLab CDS Acquisition 2.5
molecular weight characterization software.

Differential scanning calorimetry (DSC) Melting-transition temperature (Tn) and glass-
transition temperature (Tg) of purified and thoroughly dried polymer samples were measured
by differential scanning calorimetry (DSC) on a TRIOS DSC25, TA Instrument. All T4 values
were obtained from a second scan after the thermal history was removed from the first scan.
Thermo-gravimetric analysis (TGA) Decomposition onset temperatures (Tonset) and
maximum rate decomposition temperatures (Tmax) of the polymers were measured by thermal
gravimetric analysis (TGA) on a TGA55 Analyzer, TA Instrument. Polymer samples were
heated from ambient temperature to 600 °C at a heating rate of 10 °C/min. Values of Tmax were
obtained from derivative (wt%/°C) vs. temperature (°C) plots and defined by the peak values,
while Tonset Values were obtained from wt% vs. temperature (°C) plots and defined by the
temperature of 5% weight loss.

Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy
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(MALDI-TOF MS). An AXIMA performance instrument was used in reflection mode with
dithranol as the matrix. A thin layer of a 1% Nal solution was first deposited on the target plate,
followed by the solutions of matrix (5 uL, 5 mg/mL in dichloromethane) and polymer (2 uL, 5
mg/mL in dichloromethane) were mixed together. The mixed solution was spotted on the
MALDI sample plate and air-dried. The raw data was processed in the Shimadzu Biotech
MALDI-MS software.

Wide angle X-ray diffraction (WXRD) Powder X-ray diffraction data were obtained using a
Bruker D2 Phaser diffractometer with Cu-Ka radiation (A = 1.5416 A) at 30 kV and 10 mA
(scan of 26 = 5-30° with a speed of 2°/min).

Mechanical Analysis. Tensile stress/strain testing was performed by an Instron 34SC-1
universal testing system. Samples were made by melt press in a steel mold (50 x 4 x 0.4 mm?3)
and were stretched at a strain rate of 10 mm/min at ambient temperature until break. The
measurements were performed 3-5 times for each test, and the values reported are averaged
from the measured data.
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General Monomer Preparations

o]

COOH W/® KOH, H,0 T5OH 0
o 70 °C 130 °C j®

(e}

O ol ooty ooy

DHB-Me DHB-Et DHN-Me DHN-Et

Scheme S1. Synthesis of monomers.

Synthesis of DHB-Me
o}

COOH KOH, H,0 COOH TsOH Q
@[OH * g/ 70°C @ONOH Tol, 130 °C @f:f

A 75 mL pressure tube equipped with a stir bar was charged with salicylic acid (6.9 g, 0.05
mol), KOH (5.6 g, 0.1 mol), H20O (3.6 mL, 0.2 mol) and propylene oxide (14.0 mL, 0.2 mol).
After stirring for 12 h at 70 °C, the reaction was quenched by the addition of 12 M HCI (9 mL)
slowly and diluted with water (30 mL), then the mixture was extracted with ethyl acetate (3 x
50 mL). The combined organic layers were dried over anhydrous Na;SOs, filtrated, and
concentrated in vacuo. The crude product was directly used for the next step.

In a 500 mL flask which connected to a Dean-Stark trap, the above crude product was
dissolved in 300 mL toluene and 1.9 g TsOH was used as catalyst. After refluxing for 12 h at
130 °C, the reaction mixture was cooled to room temperature and concentrated in vacuo. The
crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 20: 1) to
afford DHB-Me as white solid (5.0 g, 56% for two steps). '"H NMR (400 MHz, CDCls): 5 7.86
(d,J=7.9Hz, 1H), 7.47 (t, J=7.8 Hz, 1H), 7.13-7.09 (m, 1H), 7.00 (dd, J = 8.3, 1.3 Hz, 1H),
4.75-4.68 (m, 1H), 4.36 — 4.26 (m, 2H), 1.40 (d, J = 6.7 Hz, 3H).

Synthesis of (R)-DHB-Me

COOH
OH 70°C O/\:/OH " Tol130°C

A 75 mL pressure tube equipped with a stir bar was charged with salicylic acid (6.9 g, 0.05
mol), KOH (5.6 g, 0.1 mol), H20 (3.6 mL, 0.2 mol) and (R)-propylene oxide (12.9 mL, 0.2 mol).
After stirring for 12 h at 70 °C, the reaction was quenched by the addition of 12 M HCI (9 mL)
slowly and diluted with water (30 mL), then the mixture was extracted with ethyl acetate (3 x
50 mL). The combined organic layers were dried over anhydrous Na;SOs, filtrated, and
concentrated in vacuo. The crude product was directly used for the next step.
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In a 500 mL flask which connected to a Dean-Stark trap, the above crude product was
dissolved in 300 mL toluene and 1.9 g TsOH was used as catalyst. After refluxing for 12 h at
130 °C, the reaction mixture was cooled to room temperature and concentrated in vacuo. The
crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 20: 1) to
afford (R)-DHB-Me as white solid (4.4 g, 49% for two steps). 'H NMR (400 MHz, CDCls): &
7.86 (dd, J=7.9, 1.8 Hz, 1H), 7.50 — 7.46 (m, 1H), 7.14 — 7.10 (m, 1H), 7.00 (d, J = 8.3 Hz,
1H), 4.76 — 4.68 (m, 1H), 4.36 — 4.26 (m, 2H), 1.40 (d, J = 6.6 Hz, 3H). *C NMR (100 MHz,
CDCIs): 6 168.5, 155.0,134.7,133.2, 122.9,120.9, 120.4, 75.6, 72.4, 16.3. ESI-MS: calculated
m/z 179.0708; found m/z 179.0706 [M + H]*.

Synthesis of (S)-DHB-Me
o}

OO v e (O, e O
OH O/T ’ 0

A 75 mL pressure tube equipped with a stir bar was charged with salicylic acid (6.9 g, 0.05
mol), KOH (5.6 g, 0.1 mol), H20 (3.6 mL, 0.2 mol) and (S)-propylene oxide (12.9 mL, 0.2 mol).
After stirring for 12 h at 70 °C, the reaction was quenched by the addition of 12 M HCI (9 mL)
slowly and diluted with water (30 mL), then the mixture was extracted with ethyl acetate (3 x
50 mL). The combined organic layers were dried over anhydrous Na;SOs, filtrated, and
concentrated in vacuo. The crude product was directly used for the next step.

In a 500 mL flask which connected to a Dean-Stark trap, the above crude product was
dissolved in 300 mL toluene and 1.9 g TsOH was used as catalyst. After refluxing for 12 h at
130 °C, the reaction mixture was cooled to room temperature and concentrated in vacuo. The
crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 20: 1) to
afford (S)-DHB-Me as white solid (3.8 g, 43% for two steps). '"H NMR (400 MHz, CDCls):
7.87 (dd, J = 8.0, 1.6 Hz, 1H), 7.51-7.46 (m, 1H), 7.12 (dd, J = 8.1, 7.1 Hz, 1H), 7.01 (d, J =
8.3 Hz, 1H), 4.76-4.69 (m, 1H), 4.37-4.27 (m, 2H), 1.41 (d, J = 6.6 Hz, 3H). "3 C NMR (100
MHz, CDCl3): & 168.5, 155.1, 134.8, 133.3, 122.9, 120.9, 120.4, 75.6, 72.4, 16.3. ESI-MS:
calculated m/z 179.0708; found m/z 179.0706 [M + H]".

Synthesis of DHB-Et
o)

COOH
©: . g/\ KOH, H,0 ©:COOH TeOH_ @fj_/
OH 70°C OAKOH Tol, 130 °C o

A 75 mL pressure tube equipped with a stir bar was charged with salicylic acid (6.9 g, 0.05
mol), KOH (5.6 g, 0.1 mol), H2O (3.6 mL, 0.2 mol) and 1,2-epoxybutane (16.4 mL, 0.2 mol).
After stirring for 24 h at 70 °C, the reaction was quenched by the addition of 12 M HCI (9 mL)
slowly and diluted with water (30 mL), then the mixture was extracted with ethyl acetate (3 x
50 mL). The combined organic layers were dried over anhydrous Na;SOs, filtrated, and
concentrated in vacuo. The crude product was directly used for the next step.

In a 500 mL flask which connected to a Dean-Stark trap, the above crude product was
dissolved in 300 mL toluene, and 1.9 g TsOH was used as catalyst. After refluxing for 24 h at

S6



130 °C, the reaction mixture was cooled to room temperature and concentrated in vacuo. The
crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 20: 1) to
afford DHB-Et as white solid (4.4 g, 46% for two steps). '"H NMR (400 MHz, CDCls): 5 7.89
(dd, J=7.9, 1.8 Hz, 1H), 7.50-7.46 (m, 1H), 7.14-7.10 (m, 1H), 7.00 (dd, J = 8.2, 1.2 Hz, 1H),
4.47-4.43 (m, 1H), 4.38-4.33 (m, 2H), 1.84-1.62 (m, 2H), 1.06 (t, J = 7.5 Hz, 3H). *C NMR
(100 MHz, CDCIs): & 168.6, 155.2, 134.7, 133.4, 122.7, 120.8, 120.1, 77.4, 74.4, 24.0, 9.7.
ESI-MS: calculated m/z 193.0865; found m/z 193.0862 [M + H]*.

Synthesis of DHN-Me
0

COOH . <7  _KOHH0O COOH TsOH 0
OH o] 70°C O/YOH Tol, 130 °C 0)7

A 75 mL pressure tube equipped with a stir bar was charged with 3-Hydroxy-2-naphthoic acid
(9.4 g, 0.05 mol), KOH (5.6 g, 0.1 mol), H.O (10 mL) and propylene oxide (14.0 mL, 0.2 mol).
After stirring for 12 h at 70 °C, the reaction was quenched by the addition of 12 M HCI (9 mL)
slowly and diluted with water (30 mL), then the mixture was extracted with ethyl acetate (3 x
50 mL). The combined organic layers were dried over anhydrous Na;SOs, filtrated, and
concentrated in vacuo. The crude product was directly used for the next step.

In a 500 mL flask which connected to a Dean-Stark trap, the above crude product was
dissolved in 300 mL toluene, and 1.9 g TsOH was used as catalyst. After refluxing for 12 h at
130 °C, the reaction mixture was cooled to room temperature and concentrated in vacuo. The
crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 20: 1) to
afford DHN-Me as white solid (7.4 g, 65% for two steps). '"H NMR (400 MHz, CDClz): 68.31 (s,
1H), 7.87 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.56-7.53 (m, 1H), 7.46 (d, J = 7.9 Hz,
2H), 4.70-4.62 (m, 1H), 4.33-4.17 (m, 2H), 1.37 (d, J = 6.4 Hz, 3H). 3*C NMR (100 MHz, CDCls):
0 168.9, 150.4, 136.4, 133.4, 129.9, 128.8, 128.7, 126.8, 125.8, 124.6, 118.0, 76.3, 71.8, 15.6.
ESI-MS: calculated m/z 229.0865; found m/z 229.0855 [M + H]* .

Synthesis of (R)-DHN-Me

o]
OH (0] 70 °C O/\;/OH Tol, 130 °C O)

A 75 mL pressure tube equipped with a stir bar was charged with 3-Hydroxy-2-naphthoic acid
(9.4 g, 0.05 mol), KOH (5.6 g, 0.1 mol), H20 (15 mL) and (R)-propylene oxide (12.9 mL, 0.2
mol). After stirring for 12 h at 70 °C, the reaction was quenched by the addition of 12 M HCI (9
mL) slowly and diluted with water (30 mL), then the mixture was extracted with ethyl acetate
(3 x 50 mL). The combined organic layers were dried over anhydrous Na,SO;, filtrated, and
concentrated in vacuo. The crude product was directly used for the next step.

In a 500 mL flask which connected to a Dean-Stark trap, the above crude product was
dissolved in 300 mL toluene, and 1.9 g TsOH was used as catalyst. After refluxing for 24 h at
130 °C, the reaction mixture was cooled to room temperature and concentrated in vacuo. The
crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 20: 1) to
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afford (R)-DHN-Me as white solid (5.0 g, 44% for two steps). 'H NMR (400 MHz, CDCls):
8.32 (s, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.58-7.54 (m, 1H), 7.49-7.45
(m, 2H), 4.72-4.64 (m, 1H), 4.32 (t, J = 11.1 Hz, 1H), 4.19 (dd, J = 11.5, 3.1 Hz, 1H), 1.39 (d,
J=6.4 Hz, 3H). *C NMR (100 MHz, CDCls): 6 168.9, 150.5, 136.5, 133.4, 130.0, 128.9, 128.7,
126.9, 125.9, 124.6, 118.0, 76.4, 71.8, 15.7. ESI-MS: calculated m/z 229.0865; found m/z
229.0883 [M + H]*.

Synthesis of (S)-DHN-Me

ol
COOH . 17 _KOH H0 COOH TsOH Q
oH of 70°C O/\‘/OH Tol, 130 °C of

A 75 mL pressure tube equipped with a stir bar was charged with 3-Hydroxy-2-naphthoic acid
(9.4 g, 0.05 mol), KOH (5.6 g, 0.1 mol), H2O (15 mL) and (S)-propylene oxide (12.9 mL, 0.2
mol). After stirring for 12 h at 70 °C, the reaction was quenched by the addition of 12 M HCI (9
mL) slowly and diluted with water (30 mL), then the mixture was extracted with ethyl acetate
(3 x 50 mL). The combined organic layers were dried over anhydrous Na.SO;, filtrated, and
concentrated in vacuo. The crude product was directly used for the next step.

In a 500 mL flask which connected to a Dean-Stark trap, the above crude product was
dissolved in 300 mL toluene, and 1.9 g TsOH was used as catalyst. After refluxing for 24 h at
130 °C, the reaction mixture was cooled to room temperature and concentrated in vacuo. The
crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 20: 1) to
afford (S)-DHN-Me as white solid (6.3 g, 55% for two steps). 'H NMR (400 MHz, CDCls):
8.32 (s, 1H), 7.89 (dd, J = 8.2, 1.2 Hz, 1H), 7.77 (dd, J = 8.4, 1.1 Hz, 1H), 7.58-7.54 (m, 1H),
7.49-7.45 (m, 2H), 4.72-4.64 (m, 1H), 4.32 (t, J = 11.1 Hz, 1H), 4.19 (dd, J = 11.5, 3.1 Hz, 1H),
1.39 (d, J = 6.4 Hz, 3H). C NMR (100 MHz, CDCls): 6 168.9, 150.5, 136.5, 133.4, 130.0,
128.9, 128.7, 126.9, 125.9, 124.6, 118.0, 76.4, 71.8, 15.7. ESI-MS: calculated m/z 229.0865;
found m/z 229.0880 [M + H]* .

Synthesis of DHN-Et
0

OH (0] 70 °C O/\(OH Tol, 130 °C o

A 75 mL pressure tube equipped with a stir bar was charged with 3-hydroxy-2-naphthoic Acid
(9.4 g, 0.05 mol), KOH (5.6 g, 0.1 mol), H>O (3.6 mL, 0.2 mol) and 1,2-epoxybutane (16.4 mL,
0.2 mol). After stirring for 24 h at 70 °C, the reaction was quenched by the addition of 12 M
HCI (9 mL) slowly and diluted with water (30 mL), then the mixture was extracted with ethyl
acetate (3 x 50 mL). The combined organic layers were dried over anhydrous Na>SO;, filtrated,
and concentrated in vacuo. The crude product was directly used for the next step.

In a 500 mL flask which connected to a Dean-Stark trap, the above crude product was
dissolved in 300 mL toluene, and 1.9 g TsOH was used as catalyst. After refluxing for 24 h at
130 °C, the reaction mixture was cooled to room temperature and concentrated in vacuo. The
crude product was purified by flash chromatography (petroleum ether/ethyl acetate = 20:1) to
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afford DHN-Et as white solid (4.1 g, 34% for two steps). '"H NMR (400 MHz, CDCls): 6 8.34 (s,
1H), 7.90 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.58 — 7.54 (m, 1H), 7.49 — 7.45 (m,
2H), 4.45 —-4.40 (m, 1H), 4.36 (t, J = 10.8 Hz, 1H), 4.24 — 4.20 (m, 1H), 1.82 — 1.60 (m, 2H),
1.04 (t, J=7.4 Hz, 3H)."*C NMR (100 MHz, CDCls):  169.1, 150.5, 136.4, 133.4, 129.9, 128.9,

128.7, 126.8, 125.8, 124.6, 118.0, 76.7, 75.1, 23.4, 9.8. ESI-MS: calculated m/z 243.1021,
found m/z 243.1012 [M + HJ*.
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NMR spectra of monomers
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General Polymerization Procedures

Note: Prior to polymerization, DHB-Me, (R)-DHB-Me and DHB-Et were further purified via
recrystallization from ethanol and sublimation at 100 °C twice. DHN-Me, (R)-DHN-Me and
DHN-Et were further purified via recrystallization from ethanol twice, dried in a vacuum oven
at 60 °C for 24 h and washed with extra dry n-hexane in glovebox.

Polymerizations were performed in 4 mL vials at 70 °C or 100 °C inside the glovebox, or in
25 mL Schlenk flasks interfaced to a dual-manifold Schlenk line with oil bath for runs. As
for DHB-Me and DHB-Et, the catalyst was added to the vigorously stirred prepared
monomer and initiator (p-tolylmethanol) under bulk condition. As for DHN-Me and DHN-Et,
the solution of catalyst in toluene was added to the vigorously stirred prepared monomer
and initiator (p-tolylmethanol) solution (toluene). After a desired period of time, the
polymerization was quenched by addition of 0.5 mL CHCI; containing benzoic acid (1 wt %).
The quenched mixture was dissolved in CHCIs; and precipitated into 100 mL of cold
methanol, filtered, and washed with cold methanol; then the polymer was dissolved in
CHCI3; and precipitated into 100 mL cold n-hexane to ensure any catalyst residue or
unreacted monomer was removed. All polymers were dried in a vacuum oven at 60 °C to
a constant weight.

Table S1. Results for the copolymerization of DHB-Me and DHB-Et.“

[DHB- Conv. " (%) DHB-Me

Ent Me)/[DHB- o M, (kDa D¢ T2 (°C Ty (°C
Y Et)/[Zn1]/[T] DHB-Me DHB-Et content’ (%) (kDa) (0 (0
1 50:1000:1:1 76 58 7 57.5 1.13 50 342

“Reaction conditions: Initiator (I) = p-tolylmethanol, bulk condition, 70 °C, reaction time = 6 h. “Monomer conversion
measured by 'H NMR of the quenched solution, DHB-Me content measured by 'H NMR of resulting polymers. “Number-
average molecular weight (M) and dispersity index (P = Mw/My) determined by SEC at 40 °C in THF. “Ty measured by
differential scanning calorimetry (DSC) from the second heating-scan curves with the cooling and second heating rate of 10 °C

min~!. “Tg measured by thermal gravimetric analysis (TGA) at a heating rate of 10 °C min™".
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Polymer Characterizations
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Fig. S$33. 3C NMR (CDCls, 25 °C) spectrum of P(DHB-Me-co-DHB-Et) obtained by [DHB-

Me)/[DHB-Et]/[Zn1]/[I] = 50/1000/1/1.
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Figure S34. a) MALDI-TOF MS spectrum of the low-molecular-weight P(DHB-Me) produced
by [DHB-Me)/[Zn1]/[I] = 50/1/1. b) linear plot of m/z values (y) vs the number of DHB-Me repeat
units (x).
The spacing between the two neighboring molecular ion peaks corresponding to the exact
molar mass of the repeat unit, DHB-Me [mass/charge ratio (m/z) = 178.06], as shown by the
slope of the linear plot of m/z values (y axis) versus the number of DHB-Me repeat units (x
axis). The intercept of the plot, 122.17 + 23, represents the total mass of chain ends plus the
mass of Na* [Mend = 122.17 (CHsCgHsCH20OH) g/mol + 23 (Na*) g/mol], corresponding to
linear structure CH;CsH4CH.O-[DHB-Me]—H.
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Fig. S35. TGA and DTG curves for P(DHB-Me) obtained by [DHB-Me]/[Zn1]/[I] = 500/1/1, T4
=342 °C, Tmax = 367 °C.
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Fig. S36. TGA and DTG curves for P[(R)-DHB-Me] obtained by [(R)-DHB-Me]/[Zn1]/[I] =
500/1/1, Tq =345 °C, Tmax = 371 °C.
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Fig. S37. TGA and DTG curves for P(DHB-Et) obtained by [DHB-Et)/[Zn1]/[l]] = 500/1/1, T4 =
349 °C, Tmax = 368 °C.
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Fig. S38. TGA and DTG curves for P(DHN-Me) obtained by [DHN-Me]/[Zn1]/[I] = 500/1/1, T4
=336 °C, Tmax = 369 °C.
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Fig. 839. TGA and DTG curves for P[(R)-DHN-Me] obtained by [(R)-DHN-Me)/[Zn1]/[l] =
500/1/1, T4 =349 °C, Tmax = 369 °C.
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Fig. S40. TGA and DTG curves for P(DHN-Et) obtained by [DHN-Et]/[Zn1]/[I] = 500/1/1, T4 =
344 °C, Tmax = 361 °C.
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Fig. S41. TGA and DTG curves for P(DHB-Me-co-DHB-Et) obtained by [DHB-Me]/[DHB-
Et}/[Zn1]/[1] = 50/1000/1/1, T4 = 342 °C, Tmax = 366 °C.
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Fig. S42. DSC curves for P(DHB-Me) obtained by [DHB-Me]/[Zn1]/[I] = 500/1/1, T4 = 65 °C.

532



1st cooling scan

1st heating scan

Heat Flow

2nd heating scan

d ¥ 1 d T ’ T i T E T '
0 20 40 60 80 100 120 140 160
Temperature (C)

Fig. S43. DSC curves for P[(R)-DHB-Me] obtained by [(R)-DHB-Me]/[Zn1]/[l] = 500/1/1, T, =
63 °C.
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Fig. S44. DSC curves for P(DHB-Et) obtained by [DHB-Et]/[Zn1]/[I] = 500/1/1, T4 = 49 °C.
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Fig. S45. DSC curves for P(DHN-Me) obtained by [DHN-Me]/[Zn1]/[I] = 500/1/1, Tq = 118 °C.
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Fig. S46. DSC curves for P[(R)-DHN-Me] obtained by [(R)-DHN-Me}/[Zn1}/[l] = 500/1/1, T, =
121 °C.
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Fig. S47. DSC curves for P(DHN-Et) obtained by [DHN-Et]/[Zn1]/[I] = 500/1/1, T4 =100 °C.
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Fig. S48. DSC curves for P(DHB-Me-co-DHB-Et) obtained by [DHB-Me]/[DHB-Et}/[Zn1]/[l] =
50/1000/1/1, T, = 50 °C.
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Fig. S49. GPC trace of P(DHB-Me) obtained by [DHB-Me]/[Zn1]/[I] = 1000/1/1, M, = 97.6 kg.
mol, © = 1.19 (Table 1, entry 4).
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Fig. $50. GPC trace of P[(R)-DHB-Me] obtained by [(R)-DHB-Me]/[Zn1]/[l] = 500/1/1, M, =
36.6 kg. mol!, © = 1.25 (Table 1, entry 6).
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Fig. S51. GPC trace of P(DHB-Et) obtained by [DHB-Et}/[Zn1]/[I] = 1000/1/1, M, = 123 kg.
mol', = 1.17 (Table 1, entry 12).
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Fig. S52. GPC trace of P(DHN-Me) obtained by [DHN-Me]/[Zn1]/[l] = 500/1/1, M, = 66.0 kg.
mol', © = 1.13 (Table 1, entry 14).
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Fig. S53. GPC trace of P[(R)-DHN-Me] obtained by [(R)-DHN-Me]/[Zn1]/[l]] = 500/1/1, M, =
42.5 kg. mol', B = 1.57 (Table 1, entry 17).
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Fig. S54. GPC trace of P(DHN-Et) obtained by [DHN-Et}/[Zn1]/[I] = 1000/1/1, M, = 66.7 kg
mol', B =1.10 (Table 1, entry 21).
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Fig. $55. GPC trace of P(DHB-Me-co-DHB-Et) obtained by [DHB-Me]/[DHB-Et}/[Zn1]/[l] =
50/1000/1/1, My, = 57.5 kg mol', B = 1.13 (Table S1, entry 1).
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General Stereocomplexation Procedures

Stereocomplexes were prepared from a mixture of isotactic (R)-polymer and (S)-
polymer in a 1:1 molar ratio (approximately 100 mg total). The solid polymer sample
was dissolved in CHCI3 (20 mg mL™"), filtered through a plastic frit (0.22 um pore size
nylon filter), and allowed to evaporate slowly and undisturbedly for 3—7 days. The
obtained crystalline solid was collected and dried in a vacuum oven at 60 °C to a
constant weight.
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Fig. $56. a) DSC curves for P(DHB-Me)s (first heating, 10°C min-' ); b) DSC curves for
P(DHB-Me)s (second heating, 10°C min-'); ¢c) PXRD spectra of P(DHB-Me)s; d) DSC curves
for P(DHN-Me)s (first heating, 10°C min-" ); e) DSC curves for P(DHN-Me)s (second heating,
10°C min); f) PXRD spectra of P(DHN-Me)s.
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Mechanical Property

Table S2. Summary of mechanical properties of polymers. @

Polymer Mn/KDa E/GPa ov/MPa os/MPa Elongation/%
P(DHB-Me) 97.6 2.17 £0.36 - 33.69+5.39 10.91 £ 2.15
P(DHB-Et) 123 0.74 £ 0.17 5.78 £ 2.91 3.16 £ 0.57 762.63 £ 94.40
P(DHN-Me) 88.7 211+0.34 - 45.35+1.94 3.10 £ 0.45
P(DHN-Et) 66.7 0.98 + 0.11 - 35.18 +1.58 4.30 £ 0.62
Ef;f;’l'zet; 575 0.82 £ 0.11 . 38.16+356  5.86%056

aCondition: Tested by uniaxial tensile tests. Strain rate of 10 mm/min, E: Tensile modulus, ov: yield strength, os:

break strength.

Table S3. Summary of mechanical properties of P(DHB-Me).2

Sample E/MPa os/MPa Elongation/%
1 1832.32 33.61 14.25
2 2889.78 44.42 11.84
3 1806.38 33.36 9.97
4 2195.33 34.68 9.41
5 2104.90 33.76 9.08

aCondition: Tested by uniaxial tensile tests. Strain rate of 10 mm/min, E: Tensile modulus, os: break strength.
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Figure S57. Stress-strain curves of P(DHB-Me).
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Table S4. Summary of mechanical properties of P(DHB-Me)s.

Polymer Mn/KDa E/GPa ov/MPa Elongation/%
P(DHB-Me) 35.0 2.28+0.20 39.30 £ 1.31 2.89 +0.27
P[(R)-DHB-Me] 36.6 240+0.14 31.30 +1.82 1.73+0.24
P[(S)-DHB-Me] 36.6 251+0.14 35.69 + 4.27 1.96 £ 0.21

[a] Condition: Tested by uniaxial tensile tests. Strain rate of 5 mm/min, E: Tensile modulus, ov: yield strength, os:

break strength.
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Fig S$58. Stress-Strain curves of P(DHB-Me)s.
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Table S5. Summary of mechanical properties of P(DHB-Et).2

Sample E/MPa ovy/MPa os/MPa Elongation/%
1 719.29 7.66 2.87 719.29
2 498.07 2.41 2.43 885.31
3 702.43 3.51 3.16 852.97
4 977.22 9.50 3.97 680.84
5 803.47 5.80 2.99 700.44
aCondition: Tested by uniaxial tensile tests. Strain rate of 10 mm/min, E: Tensile modulus, ov: yield strength, os:
break strength.
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Figure $59. Stress-strain curves of P(DHB-Et).
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Table S6. Summary of mechanical properties of P(DHN-Me).2

Sample E/MPa os/MPa Elongation/%
1 1948.34 42.23 3.66
2 2014.98 46.11 2.74
3 2338.01 46.48 2.66
4 2074.36 44.80 3.47
5 2176.40 47.13 2.95

aCondition: Tested by uniaxial tensile tests. Strain rate of 10 mm/min, E: Tensile modulus, os: break strength.

Stress (MPa)

Strain (%)
Figure $60. Stress-strain curves of P(DHN-Me).
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Table S7. Summary of mechanical properties of P(DHN-Et).2

Sample E/MPa os/MPa Elongation/%
1 947.96 36.69 4.93
2 841.30 34.79 478
3 961.53 33.67 3.99
4 1017.85 36.98 4.40
5 1135.20 33.77 3.40

aCondition: Tested by uniaxial tensile tests. Strain rate of 10 mm/min, E: Tensile modulus, os: break strength.
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Figure S$61. Stress-strain curves of P(DHN-Et).
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Table S8. Summary of mechanical properties of P(DHB-Me-co-DHB-Et).2

Sample E/MPa os/MPa Elongation/%
1 881.97 41.55 5.70
2 635.25 32.10 6.64
3 931.03 38.88 5.19
4 837.59 39.14 5.59
5 810.76 39.11 6.17

aCondition: Tested by uniaxial tensile tests. Strain rate of 10 mm/min, E: Tensile modulus, os: break strength.
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Figure $62. Stress-strain curves of P(DHB-Me-co-DHB-Et).
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Thermodynamic study

In an argon-filled glovebox, a toluene stock solution of DHB-Me (712.2 mg, 4 mmol), p-
tolylmethanol (4.9 mg, 0.04 mmol) and Zn1 (23.6 mg, 0.04 mmol) was prepared in a 2 mL
volumetric flask. The stock solution was divided equally to 4 vials (2 mL). Then the vials were
sealed and brought outside of glovebox. After stirring at specific temperature for 5 h, the
reaction was quenched by addition of 0.3 mL CDCIs containing benzoic acid (1 wt%). The
polymerization reaction reached equilibrium at 45-75 °C and the conversion of DHB-Me was
monitored by 'H NMR. The equilibrium monomer concentration, [DHB-Me]eq, Wwas measured
to be 0.68, 0.80, 0.94 and 1.10 mol. L' for 45 °C, 55 °C, 65 °C and 75 °C. The Van't Hoff plot
of In[DHB-Me]eq versus 1/T x 102 gave a linear fitting with a slope of —1.78 and an intercept of
5.21, from which the thermodynamic parameters were calculated to be AH,’ = —14.8 kJ. mol!
and AS,c =—43.3 J. mol'. K-', based on the equation IN[DHB-Me]eq = AH,/RT — AS,°/R, where
R is the molar gas constant. T was calculated to be 69 °C at [DHB-Me]o = 1 mol/L, based on
the equation T; = AHy/(ASy’ + RIn [DHB-Me]o).

Table S9. Raw data over equilibrium conversion at various temperatures for DHB-Me.?

Entry T (K) Conv. * (%) Mo (mol/L) T x 103 (K™ [MJeq (mol/L) IN[Meg] (Mol/L)
1 318.3 66 2.0 3.14 0.68 -0.3857
2 328.3 60 2.0 3.05 0.80 -0.2231
3 338.3 53 2.0 2.96 0.94 -0.0619
4 348.3 45 2.0 2.87 1.10 0.0953

@Reaction conditions: Catalyst = Zn1, initiator (I) = p-tolylmethanol, toluene, [DHB-Me]/[Zn1]/[I]] = 100/1/1, [M]o = 2
mol. L". ®Monomer conversion measured by 'H NMR of the quenched solution.
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Fig. S63. Van't Hoff plot of IN[DHB-Me]eq vs. reciprocal of the absolute temperature (7).
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General procedure for the depolymerization of polymers in dilute solutions
The depolymerization was conducted at 120 °C or 140 °C with Zn1 or TBD as the catalyst.
Depolymerization of P(DHB-Me) was used as an example. Inside an argon-filled glovebox,
a 15 mL pressure tube was charged with the purified P(DHB-Me) (18 mg), Zn1 (5 mol%)
and toluene (5 mL). The reactor was sealed, taken out of the glovebox, and immersed in
the oil bath. The mixture was stirred at 120 °C for 0.5 h. The reaction mixture (3 mL) was
withdrawn and concentrated under reduced pressure to determine the conversion by 'H
NMR spectroscopy.

Table S10. Results for depolymerization of polymers in dilute solutions.?

Entry Polymer Catalyst  Catalyst loading (mol %)  Temperature (°C)  Time (h)  Conv.?(%)
1 P(DHB-Me) Zn1 5 120 0.5 96
2 P(DHB-Me) TBD 10 120 12 63
3 P(DHB-Et) Zn1 5 120 0.5 94
4 P(DHB-Et) TBD 10 120 12 74
5 P(DHN-Me) Zn1 5 140 0.5 80
6 P(DHN-Me) TBD 10 140 12 93
7 P(DHN-Et) Zn1 5 140 0.5 83
8 P(DHN-Et) TBD 10 140 12 98

aReaction conditions: [M] = 0.2 M, toluene. ®Polymer conversion measured by 'H NMR of the solution.
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Fig. S64. '"H NMR spectra of P(DHB-Et) prepared by [DHB-Et]/[Zn1]/[I] = 100/1/1 (bottom),
recycled DHB-Et after depolymerization (middle) and clean starting DHB-Et for comparison
(top). (*solvent toluene impurity, A catalyst Zn1 residual, # H20)
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Fig. $65. '"H NMR spectra of P(DHN-Me) prepared by [DHN-Me]/[Zn1]/[I]] = 100/1/1 (bottom),
recycled DHN-Me after depolymerization (middle) and clean starting DHN-Me for comparison
(top). (*solvent toluene impurity, A catalyst Zn1 residual, # H2O)
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Fig. S66. '"H NMR spectra of P(DHN-Et) prepared by [DHN-Et)/[Zn1]/[I] = 100/1/1 (bottom),
recycled DHN-Et after depolymerization (middle) and clean starting DHN-Et for comparison
(top). (A catalyst Zn1 residual, # H20)
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