Alkali Metal Carbonates Catalyzed Copolymerization of Anhydrides and Epoxides: Simple, Efficient and Versatile Approach to Well-Defined Alternating Polyesters

Hongyan Xie,^{a, c} Lanlan Zheng,^b Jiabing Feng,^a Xinyu Wang,^b Suping Kuang,^b Li Zhou,^b Jia Jiang,^b Yaling Xu,^b Yan Zhao,^d and Zhiguang Xu^{a,*}

^aChina-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314000, China

^bSchool of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314000, China.

^cChina National Textile and Apparel Council Key Laboratory of Flame Retardancy Finishing of Textile Materials, Soochow University, Suzhou 215123, China

^dCollege of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.

Corresponding author: <u>zhiguang.xu@zjxu.edu.cn</u> (Z. Xu)

Run	Time	Conv. ^b	$M_{ m n,GPC}$ °	$M_{ m w}/M_{ m n}$ °
	(min)	(%)	(kg/mol)	
1	20	21.0	1.2	1.30
2	40	38.8	2.4	1.27
3	60	50.6	2.6	1.24
4	80	65.8	3.4	1.25
5	100	76.4	4.1	1.27
6	240	100	5.3	1.15

Table S1. Kinetic study for ROAP of PA and CHO induced by Cs₂CO₃.^a

^{a)}The polymerizations were conducted in bulk at 100 °C, BnOH was used as the initiator (10.4 μ L, 0.1 mmol), [Cs₂CO₃]:[BnOH]:[PA]:[CHO] = 0.2:1:100:500. ^b)Determined by ¹H NMR. ^c)Determined by gel permeation chromatography (GPC) in THF against polystyrene standard.

Fig. S1. ¹H NMR of poly(PA-*alt*-CHO) catalyzed by Na₂CO₃ at 100 °C, [C]:[I]:[PA]:[CHO] = 0.2:1:100:500 (Table 1, Run 2; 25 °C, CDCl₃).

Fig. S2. ¹H NMR of poly(PA-*alt*-CHO) catalyzed by K_2CO_3 at 100 °C, [C]:[I]:[PA]:[CHO] = 0.3:1:50:250 (Table 1, Run 3; 25 °C, CDCl₃).

Fig. S3. ¹H NMR of poly(PA-*alt*-CHO) catalyzed by K_2CO_3 at 60 °C, [C]:[I]:[PA]:[CHO] = 0.3:1:50:250 (Table 1, Run 4; 25 °C, CDCl₃).

Fig. S4. ¹H NMR of poly(PA-*alt*-PO) catalyzed by K₂CO₃ at 60 °C, [C]:[I]:[PA]:[PO] = 0.3:1:50:250 (Table 1, Run 7; 25 °C, CDCl₃).

Fig. S5. ¹H NMR of poly(PA-*alt*-AGE) catalyzed by K_2CO_3 at 100 °C, [C]:[I]:[PA]:[AGE] = 0.3:1:50:250 (Table 1, Run 8; 25 °C, CDCl₃).

Fig. S6. ¹H NMR of poly(PA-*alt*-CHO) catalyzed by Cs_2CO_3 at 100 °C, [C]:[I]:[PA]:[CHO] = 0.2:1:100:500 (Table 1, Run 5; 25 °C, CDCl₃).

Fig. S7. ¹H NMR of poly(PA-*alt*-PO) catalyzed by Cs₂CO₃ at 100 °C, [C]:[I]:[PA]:[PO] = 0.2:1:100:500 (Table 1, Run 9; 25 °C, CDCl₃).

Fig. S8. ¹H NMR of poly(PA-*alt*-BGE) catalyzed by Cs_2CO_3 at 100 °C, [C]:[I]:[PA]:[BGE] = 0.2:1:100:500 (Table 1, Run 10; 25 °C, CDCl₃).

Fig. S9. ¹H NMR of poly(PA-*alt*-AGE) catalyzed by Cs_2CO_3 at 100 °C, [C]:[I]:[PA]:[AGE] = 0.2:1:100:500 (Table 1, Run 11; 25 °C, CDCl₃).

Fig. S10. ¹H NMR of poly(PA-*alt*-PO) catalyzed by Cs_2CO_3 at 100 °C, [C]:[I]:[PA]:[PO] = 0.2:1:100:500 (Table 2, Run 2; 25 °C, CDCl₃).

Fig. S11. ¹H NMR of poly(PA-*alt*-PO) catalyzed by Cs_2CO_3 at 100 °C, [C]:[I]:[PA]:[PO] = 0.2:1:100:500 (Table 2, Run 3; 25 °C, CDCl₃).

Fig. S12. ¹H NMR of poly(PA-*alt*-CHO)-*b*-PEG-*b*-poly(PA-*alt*-CHO) catalyzed by Cs_2CO_3 at 100 °C, [C]:[I]:[PA]:[CHO] = 0.2:1:100:500 (Table 2, Run 4; 25 °C, CDCl₃).

Fig. S13. The excitation spectrum (A) and emission spectrum (B) for Dye-A and Dye-A labelled poly(PA-*alt*-PO).

Fig. S14. Evolution of GPC curves for the kinetic studies (Table S1).

Fig. S15. The comparison of the ¹³C NMR spectra of PA (bottom) and PA/K₂CO₃ (top).

Fig. S16. The comparison of the ¹³C NMR spectra of BnOH (bottom) and BnOH/K₂CO₃ (top).

Fig. S17. The MALDI-TOF analysis of the oligomer poly(PA-*alt*-PO) initiated by dye-A ([Cs]:[dye-A]:[PA]:[PO] = 0.2:1:25:125, Conv. = 85 %, $M_{n,NMR}$ = 4.9 kg/mol, $M_{n,GPC}$ = 3.1 kg/mol, M_w/M_n = 1.43).