Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information: Understanding the Monomer Deuteration Effect on the Transition Temperature of poly(*N*-isopropylacrylamide) Microgels in H₂O

Thomas Nevolianis¹, Andrea Scotti², Alexander V. Petrunin², Walter Richtering², and Kai Leonhard¹

¹Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany, European Union. ²Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union.

Contents

1	Dynamic Light Scattering and Experimental Analysis	2
2	Estimation of ϕ_0 from measurements	5
3	Coefficient of determination	6
4	Derivation of $\Delta \chi_{qc}$ from NIPAM- to D ₇ NIPAM-based microgels in H ₂ O	7
5	Derivation of $\Delta\chi_{qc}$ for NIPAM-based microgels from H_2O to D_2O	8
6	Zero-point energies	9

1 Dynamic Light Scattering and Experimental Analysis

The sigmoid function, similar to¹, is given by

$$y = A_1 + (A_2 - A_1) \left(\frac{p}{1 + 10^{\left(\log(x_{01}) - x\right)} h_1} + \frac{1 - p}{1 + 10^{\left(\log(x_{02}) - x\right)} h_2} \right)$$
(1)

and is fitted against the measurements of the NIPAM- and D_7 NIPAM-based microgels as it is shown in Figure S1. Furthermore, the derivative of the sigmoid function is taken to calculate the VPTT shift. As a result, the VPTT shifts by 4.3 K.

Figure S1 Experimental hydrodynamic radius $R_{\rm H}$ against temperature T for pNIPAM (top) and pD₇NIPAM (bottom) microgels in H₂O, respectively. A sigmoid function is fitted against both experimental measurements and its derivative is taken, resulting to a VPTT shift by 4.3 K.

The sigmoid function is fitted against the measurements of the ULC and pD_3NIPAM microgels in H_2O , and pNIPAM microgels in D_2O as it is shown in Figure S2, S3, and S4, respectively.

Figure S2 Experimental hydrodynamic radius $R_{\rm H}$ against temperature T for ULC microgels in H₂O. A sigmoid function is fitted against both experimental measurements and its derivative is taken, resulting to a VPTT of 31.1° C.

Figure S3 Experimental hydrodynamic radius $R_{\rm H}$ against temperature T for pD₃NIPAM microgels in H₂O. A sigmoid function is fitted against both experimental measurements and its derivative is taken, resulting to a VPTT of 31.6°C.

Figure S4 Experimental hydrodynamic radius $R_{\rm H}$ against temperature *T* for pNIPAM microgels in D₂O. A sigmoid function is fitted against both experimental measurements and its derivative is taken, resulting to a VPTT of 33.5°C.

2 Estimation of ϕ_0 from measurements

The volume polymer fraction at the microgel preperation conditions is approximated by

$$\phi_0 = \frac{q}{k} \,, \tag{2}$$

where k = 11.2 is the conversion constant from viscosimetry and q is the swelling ratio is given by

$$q = \frac{R_h(20^o C)}{R_h(50^o C)} \,. \tag{3}$$

Using the above equations and error propagation analysis, we find $\phi_0 = 0.58 \pm 0.06$ and $\phi_0 = 0.51 \pm 0.03$ for the pNIPAM and pD₇NIPAM microgels, respectively.

3 Coefficient of determination

If y_i , \overline{y} , and f_i are the experimental data, the mean of the experimental data, and the calculated data, respectively, then the coefficient of determination is defined as,

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} \tag{4}$$

where the residual sum of squares SS_{res} is defined as,

$$SS_{res} = \sum_{i} (y_i - f_i)^2 \tag{5}$$

and the total sum of squares SS_{res} is defined as,

$$SS_{res} = \sum_{i} (y_i - \bar{y})^2 \tag{6}$$

4 Derivation of $\Delta \chi_{qc}$ from NIPAM- to D₇NIPAM-based microgels in H₂O

For simplification, we drop the subscript qc in the following derivation. The change in Flory-Huggins parameter from NIPAM- to D_7 NIPAM-based microgels in H_2O is defined as,

$$\Delta \chi_{\text{NIPAM},D_7\text{NIPAM}}^{\text{H}_2\text{O}} = \chi^{D_7\text{NIPAM}-H_2\text{O}} - \chi^{\text{NIPAM}-H_2\text{O}} .$$
(7)

To calculate the Flory-Huggins parameters in above equation, we consider the following reactions:

$$\frac{1}{2}C_6H_{11}NO - C_6H_{11}NO + \frac{1}{2}(H_2O)_{2n} \rightleftharpoons C_6H_{11}NO - (H_2O)_n$$
$$\frac{1}{2}C_6H_4D_7NO - C_6H_4D_7NO + \frac{1}{2}(H_2O)_{2n} \rightleftharpoons C_6H_4D_7NO - (H_2O)_n$$

where the C₆H₁₁NO and C₆H₄D₇NO refer to NIPAM and D₇NIPAM, respectively. The Flory-Huggins parameters $\chi^{\text{NIPAM}-\text{H}_2\text{O}}$ and $\chi^{\text{D}_7\text{NIPAM}-\text{H}_2\text{O}}$ are defined as,

$$\chi^{\text{NIPAM}-\text{H}_2\text{O}} = \frac{\Delta G_{\text{NIPAM}-(\text{H}_2\text{O})_n} - \frac{1}{2} \left(\Delta G_{\text{NIPAM}-\text{NIPAM}} + \Delta G_{(\text{H}_2\text{O})_{2n}} \right)}{RT}$$
(8)

and

$$\chi^{D_7 \text{NIPAM} - \text{H}_2 \text{O}} = \frac{\Delta G_{D_7 \text{NIPAM} - (\text{H}_2 \text{O})_n} - \frac{1}{2} \left(\Delta G_{D_7 \text{NIPAM} - D_7 \text{NIPAM}} + \Delta G_{(\text{H}_2 \text{O})_{2n}} \right)}{RT}.$$
(9)

Finally, combining the equations (7), (9), and (9), the change in Flory-Huggins parameter from NIPAM-based to D_7 NIPAM-based microgels in H_2O is given by

$$\Delta \chi_{\text{NIPAM},\text{D}_7\text{NIPAM}}^{\text{H}_2\text{O}} = \frac{\Delta G_{\text{D}_7\text{NIPAM}-(\text{H}_2\text{O})_n} - \Delta G_{\text{NIPAM}-(\text{H}_2\text{O})_n} - \frac{1}{2} \left(\Delta G_{\text{D}_7\text{NIPAM}-\text{D}_7\text{NIPAM}} - \Delta G_{\text{NIPAM}-\text{NIPAM}} \right)}{RT}.$$
 (10)

We note that we use only the zero-point energies to calculate the $\Delta \chi^{H_2O}_{NIPAM,D_7NIPAM}$, since all other contributions cancel exactly.

5 Derivation of $\Delta \chi_{qc}$ for NIPAM-based microgels from H₂O to D₂O

For simplification, we drop the subscript qc in the following derivation. We note that for the pNIPAM microgels in D_2O , the hydrogen of the nitrogen exchanges with the solvent; therefore, this position gets deuterated. We consider the following reactions

$$\frac{1}{2}C_{6}H_{11}NO - C_{6}H_{11}NO + \frac{1}{2}(H_{2}O)_{2n} \rightleftharpoons C_{6}H_{11}NO - (H_{2}O)_{n}$$
$$\frac{1}{2}C_{6}H_{10}DNO - C_{6}H_{10}DNO + \frac{1}{2}(D_{2}O)_{2n} \rightleftharpoons C_{6}H_{10}DNO - (D_{2}O)_{n}$$

where the $C_6H_{11}NO$ and $C_6H_{10}DNO$ refer to NIPAM and D_1NIPAM when the nitrogen is with hydrogen and deuterium, respectively. To define the change in Flory-Huggins parameter for NIPAM-based microgels from H_2O to D_2O , we consider two steps: the change from NIPAM to D_1NIPAM in H_2O and of D_1NIPAM from H_2O to D_2O . We note that this is equivalent to the steps: the change of NIPAM from H_2O to D_2O and from NIPAM to D_1NIPAM in D_2O . Finally, the change in Flory-Huggins parameter for NIPAM-based microgels from H_2O to D_2O and from NIPAM to D_1NIPAM in D_2O . Finally, the change in Flory-Huggins parameter for NIPAM-based microgels from H_2O to D_2O is defined as,

$$\Delta \chi_{\rm H_2O,D_2O}^{\rm NIPAM} = \frac{\Delta \chi_{\rm NIPAM,D_1NIPAM}^{\rm H_2O} + \Delta \chi_{\rm H_2O,D_2O}^{\rm D_1NIPAM}}{RT} = \frac{(\chi^{\rm D_1NIPAM-H_2O} - \chi^{\rm NIPAM-H_2O}) + (\chi^{\rm D_1NIPAM-D_2O} - \chi^{\rm D_1NIPAM-H_2O})}{RT},$$
(11)

The Flory-Huggins interaction parameters $\chi^{\text{NIPAM}-\text{H}_2\text{O}}$ and $\chi^{\text{D}_1\text{NIPAM}-\text{H}_2\text{O}}$ are defined as,

$$\chi^{\text{NIPAM}-\text{H}_2\text{O}} = \frac{\Delta G_{\text{NIPAM}-(\text{H}_2\text{O})_n} - \frac{1}{2} \left(\Delta G_{\text{NIPAM}-\text{NIPAM}} + \Delta G_{(\text{H}_2\text{O})_{2n}} \right)}{RT}$$
(12)

and

$$\chi^{D_{1}NIPAM-H_{2}O} = \frac{\Delta G_{D_{1}NIPAM-(H_{2}O)_{n}} - \frac{1}{2} \left(\Delta G_{D_{1}NIPAM-D_{1}NIPAM} + \Delta G_{(H_{2}O)_{2n}} \right)}{RT}.$$
(13)

The change in Flory-Huggins interaction parameter from NIPAM to D_1 NIPAM in H_2O is given by

$$\Delta \chi_{\text{NIPAM},\text{D}_1\text{NIPAM}}^{\text{H}_2\text{O}} = \frac{\Delta G_{\text{D}_1\text{NIPAM}-(\text{H}_2\text{O})_n} - \Delta G_{\text{NIPAM}-(\text{H}_2\text{O})_n} - \frac{1}{2} \left(\Delta G_{\text{D}_1\text{NIPAM}-\text{D}_1\text{NIPAM}} - \Delta G_{\text{NIPAM}-\text{NIPAM}} \right)}{RT}.$$
(14)

Analogously, the change in Flory-Huggins interaction parameter for D₁NIPAM from H₂O to D₂O is given by

$$\Delta \chi_{H_2O,D_2O}^{D_1NIPAM} = \frac{\Delta G_{D_1NIPAM-(D_2O)_n} - \Delta G_{D_1NIPAM-(H_2O)_n} - \frac{1}{2} \left(\Delta G_{(D_2O)_{2n}} - \Delta G_{(H_2O)_{2n}} \right)}{RT}.$$
(15)

Finally, combining the equations (14) and (15), the change in Flory-Huggins interaction parameter for NIPAM from H_2O to D_2O is given by

$$\Delta \chi_{\rm H_2O,D_2O}^{\rm NIPAM} = \frac{\Delta G_{\rm D_1NIPAM-(D_2O)_n} - \Delta G_{\rm NIPAM-(H_2O)_n} - \frac{1}{2} \left(\Delta G_{\rm (D_2O)_{2n}} - \Delta G_{\rm (H_2O)_{2n}} + \Delta G_{\rm D_1NIPAM-D_1NIPAM} - \Delta G_{\rm NIPAM-NIPAM} \right)}{RT}.$$
 (16)

A complex of $(H_2O)_{2n}$ molecules for the ΔG_{SS} is required to have the correct stoichiometry. For pD₇NIPAM microgels in H₂O, we note this is irrelevant as this term cancels out. We study the effect of one D₂O molecule to $\Delta \chi_{qc}$. We find that $\Delta \chi_{qc}$ takes the values -0.01 (RT) and 0.12 (RT) when the D₂O creates a hydrogen bond with the CO and NH group, respectively. To increase the accuracy of $\Delta \chi_{qc}$, one expects that more D₂O molecules are required to solvate NIPAM (similar to what we find in the pD₇NIPAM microgels in H₂O). However, this is not as trivial as in the case of pD₇NIPAM microgels in H₂O; one realizes that the terms $(H_2O)_n$ and $\frac{1}{2}(H_2O)_{2n}$ do not have the same number of hydrogen bonds in both sides of the reaction influencing the $\Delta \chi_{qc}$ value. Despite our efforts, our approach has yet to be applicable to the pNIPAM microgels in the D₂O system. A detailed study is required to find a way to deuterate the NIPAM and avoid the effects mentioned above.

6 Zero-point energies

 Table S1 Zero-point energies of the molecular structures under study.

Molecular structures	ZPE (Hartree)
NIPAM-NIPAM	0.329456
D7NIPAM-D7NIPAM	0.283613
NIPAM-1H ₂ O	0.188111
NIPAM-2H ₂ O	0.21291
NIPAM-3H ₂ O	0.238955
NIPAM-4H ₂ O	0.265725
NIPAM-5H ₂ O	0.291532
NIPAM-6H ₂ O	0.317277
NIPAM-7H ₂ O	0.34432
NIPAM-8H ₂ O	0.370073
NIPAM-9H ₂ O	0.394123
NIPAM-10H ₂ O	0.422221
NIPAM-14H ₂ O	0.522915
NIPAM-25H ₂ O	0.807
NIPAM-27H ₂ O	0.857955
NIPAM-40H ₂ O	1.194076
D_NIPAM-1H_O	0.165186
D ₇ NIPAM-2H ₂ O	0 189985
D-NIPAM-3H ₂ O	0.107705
D-NIPAM-4H-O	0.21001
$D_{\rm T} NID M_{\rm T} H_{\rm T} O$	0.24270
D-NIDAM 6H-O	0.200309
D-NIDAM 7H-O	0.294273
D-NIDAM 9H.O	0.321332
D-NIDAM OH.O	0.34/109
D NIDAM 1011 O	0.3/11/3
$D_7 NIPAM-10 \Pi_2 O$	0.399205
D_7 NIPAM-14 Π_2 O	0.499/05
$D_7 NIPAM-25 \Pi_2 O$	0.783007
$D_7 NIPAM - 2/H_2 O$	0.83455
$D_7 NIPAM-40H_2O$	1.1/06/1
IH ₂ O	0.021178
2H ₂ O	0.045881
3H ₂ O	0.072951
4H ₂ O	0.098698
5H ₂ O	0.124291
6H ₂ O	0.151048
7H ₂ O	0.176655
8H ₂ O	0.204093
9H ₂ O	0.228877
10H ₂ O	0.255152
14H ₂ O	0.356023
25H ₂ O	0.640694
27H ₂ O	0.692056
40H ₂ O	1.029922
2D ₂ O	0.033493
D_1 NIPAM-1 D_2O	0.177885
D ₁ NIPAM-D ₁ NIPAM	0.32143
NIPAM-1H ₂ O (hydrogen bond with N)	0.187161
D_1 NIPAM-1 D_2 O (hydrogen bond with N)	0.177152

References

[1] M. Cors, L. Wiehemeier, J. Oberdisse and T. Hellweg, *Polymers*, 2019, 11,.