Stereo-electronic Contributions in Yttrium-Mediated Stereoselective Ring-Opening Polymerization of Functional Racemic β-Lactones: ROP of 4-Alkoxymethylene-β-Propiolactones with Bulky Exocyclic Chains

Rama M. Shakaroun,^a Ali Dhaini,^a Romain Ligny,^a Ali Alaaeddine,^b Sophie M. Guillaume (ORCID: 0000-0003-2917-8657),^{a,*} and Jean-François Carpentier (ORCID: 0000-0002-9160-7662)^{a,*}

Supporting Information

General conditions: Material and methods, Instrumentation and measurements Synthesis and characterization of BPL^{CH2OR} monomers

List of Figures

Figure S1. ¹H NMR spectra (500 MHz, CDCl₃, 23 °C) of *rac*-BPL^{CH2OTBDMS/CH2OtBu/CH2OtPr} monomers.

Figure S2. J-MOD and ¹³C{¹H} NMR spectra (100 MHz, CDCl₃, 25 °C) of *rac*-BPL^{CH2OTBDMS}, *rac*-BPL^{CH2OtBu}, *rac*-BPL^{CH2OtPr} monomers.

Figure S3. ¹H (500 MHz, CDCl₃, 25 °C) and J-MOD (125 MHz, CDCl₃, 25 °C) NMR spectra of syndioenriched PBPL^{CH2O/Pr}.

Figure S4. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 C) of a syndio-enriched PBPL^{CH2OiPr}.

Figure S5. ¹H-¹³C HMBC NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2OiPr}.

Figure S6. MALDI-ToF mass spectrum of a PBPL^{CH2OiPr}.

Figure S7. ¹H (500 MHz, CDCl₃, 25 °C) and J-MOD (125 MHz, CDCl₃, 25 °C) NMR spectra of a syndio-enriched PBPL^{CH2OrBu}.

Figure S8. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2O/Bu}.

Figure S9. ¹H-¹³C HMBC NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2O/Bu}.

Figure S10. MALDI-ToF mass spectrum of a PBPL^{CH2OtBu}.

Figure S11. Variation of $M_{n,NMR}$, $M_{n,SEC}$, and $M_{n,theo}$ molar mass values of PBPL^{CH2O/Bu} as a function of the BPL^{CH2O/Bu} monomer loading/conversion.

Figure S12. ¹H (500 MHz, CDCl₃, 25 °C) and J-MOD (125 MHz, CDCl₃, 25 °C) NMR spectra of a syndio-enriched PBPL^{CH2OTBDMS}.

Figure S13. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2OTBDMS}.

Figure S14. ¹H-¹³C HMBC NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2OTBDMS}.

Figure S15. MALDI-ToF mass spectrum of a low molar mass PBPL^{CH2OTBDMS}.

Figure S16. Variation of $M_{n,NMR}$, $M_{n,SEC}$, and $M_{n,theo}$ molar mass values of PBPL^{CH2OTBDMS} as a function of the BPL^{CH2OTBDMS} monomer loading/conversion.

Figure S17. DSC thermogram of a syndio-enriched PBPL^{CH2O/Pr}.

Figure S18. DSC thermogram of a syndio-enriched PBPL^{CH2O/Bu}.

Figures S19 and S20. DSC thermograms of syndio-enriched PBPL^{CH2OTBDMS}.

General conditions

Material and methods

All manipulations involving organometallic catalysts were performed under inert atmosphere (argon, <3 ppm O₂) using standard Schlenk, vacuum line, and glovebox techniques. Toluene was freshly distillated from Na/benzophenone under argon and degassed thoroughly by freeze-thaw-vacuum cycles prior to use. Isopropyl alcohol was distilled over Mg turnings under argon atmosphere and kept over activated 3–4 Å molecular sieves. Proligands {ONNO^{*t*Bu2}}H₂, {ONNO^{*c*umyl2}}H₂, {ONNO^{Me2}}H₂ and {ONNO^{*C*l2}}H₂, and precursor Y[N(SiHMe₂)₂]₃(THF)_{1.5}, used to prepare amido yttrium complexes **2a-d**, respectively, were synthesized according to the reported procedures.^{6a,13}

Instrumentation and measurements

¹H (500 and 400 MHz) and ¹³C{¹H} (125 MHz and 100 MHz) NMR spectra were recorded on Bruker Avance AM 500 and Ascend 400 spectrometers at 25 °C. ¹H and ¹³C{¹H} NMR spectra were referenced internally relative to SiMe₄ ($\delta = 0$ ppm) using the residual solvent resonances.

Number-average molar mass ($M_{n,SEC}$) and dispersity ($D_M = M_w/M_n$) values of the PBPL^{FG}s were determined by size-exclusion chromatography (SEC) in THF at 30 °C (flow rate = 1.0 mL.min⁻¹) on a Polymer Laboratories PL50 apparatus equipped with a refractive index detector and a set of two ResiPore PLgel 3 µm MIXED-D 300 × 7.5 mm columns. The polymer samples were dissolved in THF (*ca.* 2 mg.mL⁻¹). All elution curves were calibrated with polystyrene standards; $M_{n,SEC}$ values of the PBPL^{FG}s were uncorrected for the possible difference in hydrodynamic radius *vs.* that of polystyrene.

The molar mass of PBPL^{FG} samples was also determined by ¹H NMR analysis in CDCl₃ from the relative intensities of the signals of the PBPL^{FG} repeating unit methine hydrogen (δ , ppm): 5.25 –OC*H*(CH₂OCH(CH₃)₂), PBPL^{CH2O/Pr}; 5.22 –OC*H*(CH₂OC(CH₃)₃), PBPL^{CH2O/Bu}; 5.20 –OC*H*(CH₂OSi(CH₃)₂C(CH₃)₃), PBPL^{CH2OTBDMS}; and of the isopropyl chain-end (δ , ppm): 4.94–4.98 (CH₃)₂CHO–, 1.19–1.25 (CH₃)₂CHO–).

Monomer conversions were calculated from ¹H NMR spectra of the crude polymer samples in CDCl₃ by using the integration (Int.) ratios [Int._{PBPL(FG)} / (Int._{PBPL(FG)} + Int._{BPL(FG)})] of the methine hydrogens of BPL^{FG}s and PBPL^{FG}s (corresponding methine hydrogen signal of the polymers (see above)), and of the monomers (d (ppm) 4.60 BPL^{CH2O/Pr}, 4.55 BPL^{CH2O/Bu}, and 4.65 BPL^{CH2OTBDMS}). High resolution Matrix Assisted Laser Desorption Ionization - Time of Flight, MALDI-ToF, mass spectra of the polymers were recorded using an ULTRAFLEX III TOF/TOF spectrometer (Bruker Daltonik Gmbh, Bremen, Germany) in positive ionization mode. Spectra were recorded using reflectron mode and an accelerating voltage of 25 kV. A mixture of a freshly prepared solution of the polymer in THF or CH_2Cl_2 (HPLC grade, 10 mg mL⁻¹) and DCTB (*trans*-2-(3-(4-*tert*-butylphenyl)-2methyl-2-propenylidene) malononitrile, and a MeOH solution of the cationizing agent (NaI, 10 mg mL⁻¹) were prepared. The solutions were combined in a 1:1:1 *v*/*v*/*v* ratio of matrix-to-sample-to-cationizing agent. The resulting solution (0.25–0.5 µL) was deposited onto the sample target (Prespotted AnchorChip PAC II 384 / 96 HCCA) and air or vacuum dried.

Differential scanning calorimetry (DSC) analyses were performed with a DSC2500 TA Instrument apparatus calibrated with indium using aluminum capsules (40 μ L). The thermograms were recorded under a continuous flow of helium (25 mL min⁻¹) according to the following cycles: -80 to 200 °C at 10 °C min⁻¹; 200 to -80 °C at 10 °C min⁻¹; -80 °C for 5 min; -80 to 200 °C at 10 °C min⁻¹; 200 to -80 °C at 10 °C min⁻¹.

Synthesis and characterization of BPL^{CH2OR} monomers. BPL^{CH2OR} monomers were synthesized by carbonylation of the corresponding racemic or enantiopure glycidyl ethers (*rac-*/(*S*)-Glyc^{CH2OR}) using a previously reported procedure.¹ All *rac*-BPL^{CH2OR} and (*S*)-BPL^{CH2OR} monomers were stored under argon at -27 °C.

Rac/(S)-BPL^{CH2O*i*Pr}. Using [Salph(Cr(THF)₂)][Co(CO)₄] (431 mg, 0.47 mmol) and *rac*-Glyc^{CH2O*i*Pr} (5.51 g, 47.51 mmol, 100 equiv), the carbonylation reaction afforded *rac*-BPL^{CH2O*i*Pr} which was isolated following a double distillation using a Kügelrorh oven (180 °C, 0.1 torr) as a colorless viscous liquid (4.45 g, 65% yield). ¹H NMR (500 MHz, CDCl₃, 25 °C) δ (ppm): δ 4.60 (dtd, ³*J*_{*H*-*H*} = 6 Hz, ³*J*_{*H*-*H*} = 4 Hz, ³*J*_{*H*-*H*} = 3 Hz, 1H), 3.74 (dd, ²*J*_{*H*-*H*} = 12 Hz, ³*J*_{*H*-*H*} = 3 Hz, 1H), 3.68 – 3.58 (m, 2H), 3.42 (dd, ²*J*_{*H*-*H*} = 16 Hz, ³*J*_{*H*-*H*} = 6 Hz, 1H), 3.35 (dd, ²*J*_{*H*-*H*} = 16 Hz, ³*J*_{*H*-*H*} = 4 Hz, 1H), 1.15 (d, *J* = 6 Hz, 6H) (Figure S1). ¹³C NMR (125 MHz, CDCl₃, 25 °C) δ (ppm): 72.6 (OCH(CH₃)₂), 69.6 (CHOC(O)), 67.4 (CH₂OCH), 39.4 (CH₂C(O)O), 21.8 (CH(*C*H₃)₂), 21.8 (CH(*C*H₃)₂) (Figure S2). Carbonylation of (*S*)-BPL^{CH2O*i*Pr} was performed similarly but starting from (*S*)-Glyc^{CH2O*i*Pr} and gave (*S*)-BPL^{CH2O*i*Pr} as a colorless viscous liquid (4.3 g, 63% yield) that displayed NMR spectra identical to those of *rac*-BPL^{CH2O*i*Pr}.

Rac-/(S)-BPL^{CH2O/Bu} Using [Salph(Cr(THF)₂)][Co(CO)₄] (281 mg, 0.31 mmol) and *rac*-Glyc^{CH2O/Bu} (4.03 g, 31.0 mmol, 100 equiv), the carbonylation reaction afforded *rac*-

BPL^{CH2O/Bu} which was isolated following a double distillation using a Kügelrorh oven (190-200 °C, 0.1 torr) as a colorless viscous liquid (3.13 g, 64% yield). ¹H NMR (500 MHz, CDCl₃, 25 °C) δ (ppm): δ 4.55 (dtd, ³*J*_{*H*-*H*} = 6 Hz, ³*J*_{*H*-*H*} = 4 Hz, ³*J*_{*H*-*H*} = 3 Hz, 1H), 3.66 (dd, ²*J*_{*H*-*H*} = 11 Hz, ³*J*_{*H*-*H*} = 3 Hz, 1H), 3.54 (dd, ²*J*_{*H*-*H*} = 11 Hz, ³*J*_{*H*-*H*} = 4 Hz, 1H), 3.37 (dd, ²*J*_{*H*-*H*} = 16 Hz, ³*J*_{*H*-*H*} = 6 Hz, 1H), 3.31 (dd, ²*J*_{*H*-*H*} = 16 Hz, ³*J*_{*H*-*H*} = 5 Hz, 1H), 1.15 (s, 9H) (Figure S1). ¹³C NMR (125 MHz, CDCl₃, 25 °C) δ (ppm): δ 167.9 (*C*=O), 74.3 (O*C*(CH₃)₃), 69.6 (*C*HOC(O)), 63.6 (*C*H₂OC), 39.4 (*C*H₂C(O)O), 27.2 (*C*(*C*H₃)₃) (Figure S2). ESI-MS *m*/*z*_{found} = 181.0833 *vs*. *m*/*z*_{calculated} = 181.0835. Carbonylation of (*S*)-BPL^{CH2O/Bu} was performed similarly but starting from (*S*)-Glyc^{CH2O/Bu} and gave (*S*)-BPL^{CH2O/Bu} as a colorless viscous liquid (3.0 g, 61% yield) that displayed NMR spectra identical to those of *rac*-BPL^{CH2O/Bu}.

Rac-/(S)-BPL^{CH2OTBDMS}.² Using [Salph(Cr(THF)₂)][Co(CO)₄] (246 mg, 0.27 mmol) and *rac*-Glyc^{CH2OTBDMS} (5.57 g, 29.64 mmol, 100 equiv) afforded *rac*-BPL^{CH2OTBDMS} which was isolated following a double distillation using a Kügelrorh oven (140 °C, 0.1 torr) as a colorless viscous liquid (3.8 g, 60% yield). ¹H NMR (500 MHz, CDCl₃, 25 °C) δ (ppm): 4.65–4.46 (m, 1H), 4.02 (dd, ²*J*_{*H*-*H*} = 12 Hz, ²*J*_{*H*-*H*} = 3 Hz, 1H), 3.82 (dd, ³*J*_{*H*-*H*} = 12 Hz, ³*J*_{*H*-*H*} = 3 Hz, 1H), 3.53–3.28 (m, 2H), 0.91 (s, 9H), 0.09 (s, 6H) (Figure S1). ¹³C NMR (125 MHz, CDCl₃, 25 °C) δ (ppm): 171.7 (*C*=O), 74.8 (*C*HOC(O)), 63.9 (*C*H2OTBDMS), 37.4 (*C*H2C(O)O), 25.7 Si(CH₃)₂*C*(CH₃)₃, 15.7 Si(CH₃)₂*C*(*C*H₃)₃, -4.9 Si(*C*H₃)₂*C*(*C*H₃)₃ (Figure S2). Carbonylation of (*S*)-BPL^{CH2OTBDMS} was performed similarly but starting from (*S*)-Glyc^{CH2OTBDMS} and gave (*S*)-BPL^{CH2OTBDMS} as a colorless viscous liquid (3.65 g, 58% yield) that displayed NMR spectra identical to those of *rac*-BPL^{CH2OTBDMS}.

References

a) J. A. Schmidt, E. B. Lobkovsky and G. W. Coates, *J. Am. Chem. Soc.*, 2005, *127*, 11426–11435; b) J. W. Kramer, G. W. Coates, *Tetrahedron* 2008, *64*, 6973–6978.

² R. M. Shakaroun, H. Li, P. Jéhan, A. Alaaeddine, J.-F. Carpentier, S. M. Guillaume, *Polym. Chem.*, **2020**, *11*, 2640–2652.

Figure S1. ¹H NMR spectra (500 MHz, CDCl₃, 23 °C) of *rac*-BPL^{CH2OTBDMS}, *rac*-BPL^{CH2OtBu}, *rac*-BPL^{CH2OtPr} monomers (from top to bottom).

Figure S2. J-MOD / ¹³C{¹H} NMR spectra (100 MHz, CDCl₃, 25 °C) of *rac*-BPL^{CH2OTBDMS}, *rac*-BPL^{CH2O*t*Bu}, and *rac*-BPL^{CH2O*t*Pr} monomers (from top to bottom).

Figure S3. ¹H (500 MHz, CDCl₃, 25 °C) (top) and J-MOD (125 MHz, CDCl₃, 25 °C) (bottom) NMR spectra of a syndio-enriched PBPL^{CH2O*i*Pr} prepared from the ROP of *rac*-BPL^{CH2O*i*Pr} mediated by the **2b**/*i*PrOH (1:1) system (Table 1, entry 6).

Figure S4. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2O/Pr} (Table 1, entry 6).

Figure S5. ¹H-¹³C HMBC NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2O*i*Pr} (Table 1, entry 6).

Figure S6. MALDI-ToF mass spectrum (DCTB matrix, ionized by Na⁺) of a PBPL^{CH2O/Pr} (Table 1, entry 1), showing populations I (major, top) and II (minor, bottom) showing a repeating unit of m/z 144 corresponding to the BPL^{CH2O/Pr} monomer unit. Right and middle zoomed regions correspond to the simulated (top) and experimental (bottom) spectra for populations I and II, respectively. The major population (I) corresponds to α -isopropoxy, ω -hydroxyl telechelic PBPL^{CH2O/Pr} chains ionized by Na⁺, as confirmed by the close match with the corresponding isotopic simulation of [(CH₃)₂CHO(COCH₂CH(CH₂OC₃H₇)O)_nH]·Na⁺ with, for example, $m/z_{calculated} = 1379.7545$ *vs.* $m/z_{found} = 1379.746$ for n = 9. The minor population (II) corresponds to α -carboxylic, ω -hydroxy telechelic PBPL^{CH2O/Pr} chains ionized by Na⁺, as confirmed by Na⁺, as confirmed by Na⁺, as confirmed by the close match with the corresponds to α -carboxylic, ω -hydroxy telechelic PBPL^{CH2O/Pr} chains ionized by Na⁺, as confirmed by the close match with the corresponds to α -carboxylic, ω -hydroxy telechelic PBPL^{CH2O/Pr} chains ionized by Na⁺, as confirmed by the close match with the sourcesponding isotopic simulation illustrated for [HO(C₇H₁₂O₃)_nH]·Na⁺ with, for example, $m/z_{calculated} = 1337.7076$ *vs.* $m/z_{found} = 1337.709$ for n = 9. This latter population likely results from hydrolysis during the MS sample preparation/ionization.

Figure S7. ¹H (500 MHz, CDCl₃, 25 °C) (top) and J-MOD (125 MHz, CDCl₃, 25 °C) (bottom) NMR spectra of a syndio-enriched PBPL^{CH2O*t*Bu} prepared from the ROP of *rac*-BPL^{CH2O*t*Bu} mediated by the **2a**/*i*PrOH system (Table 2, entry 11).

Figure S8. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2O/Bu} (Table 2, entry 11).

Figure S9. ¹H-¹³C HMBC NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2OrBu} (Table 2, entry 11).

Figure S10. MALDI-ToF mass spectrum (DCTB matrix, ionized by Na⁺) of a PBPL^{CH2O/Bu} (Table 2, entry 5). Right zoomed regions correspond to the simulated (top) and experimental (bottom) spectra of the main population (Table 2, entry 5). The expected population of macromolecules having a repeating unit of m/z 158, corresponding to α -isopropoxy, ω -hydroxyl telechelic PBPL^{CH2O/Bu} chains ionized by Na⁺ is clearly observed. This is confirmed by the close match with the corresponding isotopic simulations, as illustrated for [(CH₃)₂CHO(COCH₂CH(CH₂OC₄H₉)O)_nH]·Na⁺ with, for example, $m/z_{calculated}$ 1189.7068 *vs.* m/z_{found} 1189.698 for n = 7.

Figure S11. Variation of $M_{n,NMR}$ O, $M_{n,SEC}$ \bigcirc , and $M_{n,theo}$ (solid line) values of PBPL^{CH2O/Bu} synthesized from the ROP of *rac*-BPL^{CH2O/Bu} mediated by the **2b**/*i*PrOH (1:1) system as a function of the monomer loading/conversion (Table 2, entries 5–9).

Figure S12. ¹H (500 MHz, CDCl₃, 25 °C) (top) and J-MOD (125 MHz, CDCl₃, 25 °C) (bottom) NMR spectra of a syndio-enriched PBPL^{CH2OTBDMS} prepared from the ROP of *rac*-BPL^{CH2OTBDMS} mediated by the **2a**/*i*PrOH (1:1) system (Table 3, entry 7); * stands for residual monomer, toluene and water resonances.

Figure S13. ¹H-¹H COSY NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2OTBDMS} (Table 3, entry 7).

Figure S14. ¹H-¹³C HMBC NMR spectrum (500 MHz, CDCl₃, 25 °C) of a syndio-enriched PBPL^{CH2OTBDMS} (Table 3, entry 7).

Figure S15. MALDI-ToF mass spectrum (DCTB matrix, ionized by Na⁺) (top, full spectrum; bottom, detail of the region for DP = 7-9) of a low molar mass PBPL^{CH2OTBDMS} ($M_{n,NMR} = 4000$, $M_{n,SEC} = 6300$ g.mol⁻¹) prepared from the ROP of 25 equiv of *rac*-BPL^{CH2OTBDMS} with the **2a**/*i*PrOH (1:1) system (entry not reported in Table 3). The major populations observed (**I**) corresponds to α -isopropoxy, ω -hydroxyl telechelic PBPL^{CH2OTBDMS} chains ionized by Na⁺ (see the zoomed regions featuring the simulated (top) and experimental (bottom) spectra). The minor populations (**II-IV**) most likely arise from hydrolysis during the MS sample preparation/ionization.

Figure S16. Variation of $M_{n,NMR}$ (2), $M_{n,SEC}$ \bigcirc , and $M_{n,theo}$ (solid line) molar mass values of PBPL^{CH2OTBDMS} synthesized from the ROP of *rac*-BPL^{CH2OTBDMS} mediated by the **2b**/*i*PrOH (1:1) catalyst system as a function of the BPL^{CH2OTBDMS} monomer loading/conversion (Table 3, entries 2–7).

Figure S17. DSC thermogram (heating rate = 10 °C min⁻¹, second heating cycle –80 to 200 °C) of a syndio-enriched PBPL^{CH2O*i*Pr} ($P_r = 0.86$) prepared by ROP of *rac*-BPL^{CH2O*i*Pr} with the **2b**/*i*PrOH system (Table 1, entry 8).

Figure S18. DSC thermogram (heating rate = 10 °C min⁻¹, second heating cycle –80 to 200 °C) of a syndio-enriched PBPL^{CH2O/Bu} ($P_r = 0.84$) prepared by ROP of *rac*-BPL^{CH2O/Bu} with the **2b**/*i*PrOH system (Table 2, entry 5).

Figure S19. DSC thermogram (heating rate = 10 °C min⁻¹, second heating cycle –80 to 200 °C) of a syndio-enriched PBPL^{CH2OTBDMS} ($P_r = 0.81$) prepared by ROP of *rac*-BPL^{CH2OTBDMS} with the **2b**/*i*PrOH system (Table 3, entry 6).

Figure S20. DSC thermogram (heating rate = 10 °C min⁻¹, second heating cycle –80 to 200 °C) of a syndio-enriched PBPL^{CH2OTBDMS} ($P_r = 0.81$) prepared by ROP of *rac*-BPL^{CH2OTBDMS} with the **2b**/*i*PrOH system (Table 3, entry 7).