Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Systematic study on the effects of the structure of block copolymers of PEG and poly(ɛ-caprolactone-co-glycolic acid) on their temperatureresponsive sol-to-gel transition behavior

Yuichi Ohya*^{a,b}, Hidenori Yonezawa^a, Chihiro Moriwaki^a, Nobuo Murase^c, Akinori Kuzuya^{a,b}

^aDepartment of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan ^bKansai University Medical Polymer Research Center (KUMP-RC), Kansai University, Suita, Osaka 564-8680, Japan ^cOrganization for Research and Development of Innovative Science and Technology (ORDSIT), Kansai University, Suita, Osaka 564-8680, Japan

MATERIALS AND METHODS

Materials

Poly(ethylene glycol) (PEG) (molecular weight (MW) = 1000 g/mol (PEG₁₀₀₀), 1540 g/mol (PEG₁₅₄₀), and 2000 g/mol (PEG₂₀₀₀)), ε -caprolactone (CL), tin-2-ethylhexanoate (Sn(Oct)₂), butyric acid anhydride, 4-dimethylaminopyridine (DMAP), anhydrous dichloromethane, as well as other chemicals and organic solvents were purchased from FUJIFILM Wako Pure Chemical Ind., Ltd. (Osaka, Japan). Mono-methoxy poly(ethylene glycol) (MeO-PEG) (MW = 550 g/mol, MeO-PEG₅₅₀) and glycolide (GL) were obtained from Sigma-Aldrich Co. LLC (St. Louis, MO, USA). Hexamethylene diisocyanate (HMDI) and acetic anhydride (Ac₂O) were purchased from Tokyo Chemical Industry Co. Ltd. (Tokyo, Japan). Branched PEG with four arms (MW = 5000 g/mol, 4-arm PEG₅₀₀₀) was supplied by NOF Co. (Tokyo, Japan). Water was purified using Millipore Elix UV3 direct-Q UV (Merck, Darmstadt, Germany).

Measurements

¹H nuclear magnetic resonance (¹H-NMR) spectra were obtained through an NMR spectrometer (400 MHz, JNM-GSX-400, JEOL, Tokyo, Japan) using deuterated solvent (CDCl₃). The chemical shifts were calibrated using tetramethylsilane (TMS). The number average molecular weight (M_n) of the polymers was calculated from ¹H-NMR spectra. The weight average molecular weight (M_w) and polydispersity index (M_w/M_n) of the polymers were determined using size exclusion chromatography (SEC) (column: TSKgel Multipore H_{XL}-M × 2; detector: RI). The measurements were performed using dimethylformamide (DMF) as an eluent with a flow rate of 1.0 mL min⁻¹ at 40 °C using a series of PEGs as standards. Temperature-dependent rheological measurements of the sol-to-gel transition of the polymer solutions were performed using a dynamic rheometer (Thermo HAAKE RS600, Thermo Fisher Scientific, Waltham, MA, USA) according to a study reported previously.¹ Thermal analysis of the copolymers and solutions was conducted using a differential scanning calorimeter (DSC-60, Shimadzu) with sealed aluminum pans.

Synthesis of PCGA-PEG-PCGA (ABA triblock copolymer)

ABA triblock copolymers of poly(ε -caprolactone-*co*-glycolide) (PCGA) and PEG (PCGA-PEG-PCGA) were synthesized by ring-opening copolymerization of CL and GL in the presence of PEG as a macroinitiator and Sn(Oct)₂ as a catalyst, according to the method described in previous works (**Scheme S1**). ¹⁻³ PEG₁₅₄₀ (16.0 g, 10.4 mmol) was dried under *in vacuo* at 120 °C for 5 h in a 100-mL flask with a stopcock. After cooling to room temperature (r.t.), CL (34.4 g, 302 mmol), GL (6.04 g, 52.1 mmol), and Sn(Oct)₂ (151 mg, 372 µmol) were added to the flask and dried further *in vacuo* at r.t. for 12 h. Polymerization was carried out at 160 °C for 12 h by heating the flask in an oil bath. The product was purified by reprecipitation using chloroform (100 mL) as a good solvent and diethyl ether

(1000 mL) as a poor solvent to obtain the PCGA-PEG-PCGA triblock copolymer as a colorless liquid or white solid. The yield after reprecipitation was 52.3 g (92.7%). Various PCGA-PEG-PCGA triblock copolymers were synthesized by changing CL and GL feed amounts and the MW of PEG (using PEG₁₀₀₀ or PEG₂₀₀₀). The products were analyzed using ¹H-NMR, and the CL/GA ratio (GL corresponds two GA units) was determined from the ¹H-NMR spectra. The obtained PCGA-PEG-PCGA triblock copolymers (ABA series) were given code names such as ABA1.5k-3.1k-3.4, where 1.5k = MW of a PEG segment, 3.1k = sum MW of two PCGA segments, and 3.4 = molar ratio of CL/GA in a PCGA segment. Typical ¹H-NMR spectra and SEC elution profiles for ABA triblock copolymers are shown in **Figures S1(a)–(k)**.

Synthesis of PEG-PCGA-PEG (BAB triblock copolymer)

AB-type diblock copolymers of PEG and PCGA (PEG-PCGA) were synthesized by ring-opening copolymerization of CL and GL in the presence of MeO-PEG₅₅₀ as a macroinitiator and Sn(Oct)₂ as a catalyst according to the method described below (Scheme S2). MeO-PEG₅₅₀ (9.42 g, 17.1 mmol) was dried in vacuo at 120 °C for 5 h in a 100-mL flask with a stopcock. After cooling to r.t., CL (18.0 g, 158 mmol), GL (2.62 g, 22.5 mmol), and Sn(Oct)₂ (79.8 mg, 197 µmol) were added to the flask and dried further in vacuo at r.t. for 12 h. Polymerization was carried out at 160 °C for 12 h by heating the flask in an oil bath. The product was purified using the same reprecipitation method described above. A white solid or colorless liquid of PEG-PCGA diblock copolymer was obtained. Yield: 18.4 g (61.5%). Various PEG-PCGA diblock copolymers were synthesized by changing CL and GL feed amounts. The obtained PEG-PCGA (4.50 g, 2.14 mmol) was placed in a flask and dried in vacuo at 120 °C for 4 h. Anhydrous dichloromethane was added to the flask to dissolve PEG-PCGA. HMDI (183 mg, 1.09 mmol) was dissolved in anhydrous dichloromethane and refluxed at 70 °C for 6 h. The product was purified using the same reprecipitation method described above. A white solid (in some cases, a paleyellow solid or liquid) of the PEG-PCGA-PEG triblock copolymer was obtained. The yield after reprecipitation was 3.14 g (68.3%). The obtained PEG-PCGA-PEG triblock copolymers (BAB series) were given code names such as BAB1.1k-3.8k-3.9, where 1.1k = sum MW of two PEG segments and 3.8k = MW of the PCGA segment, and the molar ratio of CL/GA in the PCGA segment is 3.9. Typical ¹H-NMR spectra and SEC elution profiles for BAB triblock copolymers are shown in **Figures S2(a)**-(f).

Synthesis of ABA-Ac and ABA-Bu series

The introduction of an acetyl or butyryl group on the termini of PCGA-PEG-PCGA was carried out under an N₂ atmosphere, as shown in **Scheme S3**. The previously prepared ABA1.5k-3.1k-3.4 (0.87 g, 0.19 mmol) was placed in a 30-mL flask and dried *in vacuo* for 2h. Pyridine (3 mL) was added to the flask to dissolve the polymer. Ac₂O (17.8 μ L, 0.19 mmol) and DMAP (33.0 mg, 0.27 mol) were

then added to the flask. The reaction mixture was stirred at 80 °C for 1 h. Pyridine, excess Ac₂O, and acetic acid by-products were removed under reduced pressure. The product was purified by reprecipitation using chloroform (1.5 mL) as a good solvent and a mixture of diethyl ether and methanol (10/1, v/v) (30 mL) or diethyl ether (30 mL) as a poor solvent to give a white solid of the partially acetylated PCGA-PEG-PCGA, ABA-Ac series. The yield after reprecipitation was 0.53 g (67.1%). By varying the feed ratio of Ac₂O or butyric acid anhydride, PCGA-PEG-PCGA polymers with various degrees of substitution (DS) of the acetyl or butyryl groups (ABA-Ac or ABA-Bu series) were synthesized. The products were analyzed using ¹H-NMR, and the DS values of the acetyl or butyryl groups were calculated from the ¹H-NMR spectra. The obtained partially acetylated or butyrylated PCGA-PEG-PCGAs were given code names such as ABA-Ac₉₆ or ABA-Bu₉₁, where 96 or 91 = DS of acetyl or butyryl groups, respectively. Typical ¹H-NMR spectra and SEC elution profiles for ABA-Ac and ABA-Bu series are shown in **Figures S3(a)–(d), S4(a)–(b)**.

Synthesis of 4-arm PEG-PCGA and partially acetylated 4-arm PEG-PCGA

4-Arm PEG-PCGA and partially acetylated 4-arm PEG-PCGA were synthesized using a method similar to that described above, using 4-arm PEG₅₀₀₀ as a macroinitiator and subsequent acetylation (Scheme S4).

4-Arm PEG₅₀₀₀ (1.49 g, 0.298 mmol) was dried *in vacuo* at 120 °C for 3 h in a 30-mL flask with a stopcock. After cooling to r.t., CL (3.29 g, 28.9 mmol), GL (0.577 g, 4.97 mmol), and Sn(Oct)₂ (17.9 mg, 44.2 µmol) were added to the flask. The flask was then cooled with liquid N₂ and dried overnight *in vacuo*. Polymerization was performed at 160 °C for 12 h by heating the flask in an oil bath. The product was purified by the same reprecipitation method. A white or pale-yellow solid of 4-arm PEG-PCGA was obtained. The yield after reprecipitation was 4.33g (80.3%). Various 4-arm PEG-PCGAs were synthesized by varying CL and GL feed amounts. The products were analyzed using ¹H-NMR, and the CL/GA ratio was determined from the ¹H-NMR spectra. The obtained 4-arm PEG-PCGAs (4-arm series) were given code names such as 4-arm5.0k-7.6k, where 5.0k = MW of 4-arm PEG and 7.6k = sum MW of four PCGA segments. Typical ¹H-NMR spectra and SEC elution profiles for 4-arm series are shown in **Figures S5(a)–(d)**.

The prepared 4-arm5.0k-7.6k (0.60 g, 0.047 mmol) was placed in a 30-mL flask and dried *in vacuo* for 2h. Pyridine (3 mL) was added to the flask to dissolve the polymer. Ac₂O (26.8 μ L, 0.071 mmol) was then added. The reaction mixture was stirred at 80 °C for 1 h. Pyridine, excess Ac₂O, and acetic acid by-products were removed under reduced pressure. The product was purified by the same precipitation method. A white solid, partially acetylated 4-arm PEG-PCGA, was obtained. The yield after reprecipitation was 0.56 g (93.1%). By varying the amount of Ac₂O, partially acetylated 4-arm PEG-PCGA with various DS of acetyl groups (4-arm-Ac series) were synthesized. The products were analyzed using ¹H-NMR, and the DS values of the acetyl groups were calculated from the ¹H-NMR

spectra. The obtained partially acetylated 4-arm PEG-PCGAs (4-arm-Ac series) were named 4-arm- Ac_{18} , where 18 = DS of the acetyl group. Typical ¹H-NMR spectra and SEC elution profiles for 4-arm-Ac series are shown in **Figures S6(a)–(d)**.

Morphology of the polymers

For the polymer morphology, photographs of the neat polymers (in dry state at r.t.) are shown in **Figures S7–12**. No photograph was recorded for the samples not shown.

Confirmation of sol-to-gel transition behavior

The sol-to-gel transition behavior of the aqueous solutions of the polymers was investigated by a testtube inverting method.⁴ A vial containing the polymer dissolved in phosphate-buffered saline (PBS, pH = 7.4) was immersed in a water bath at the desired temperature for 15 min, removed from the water bath, then inverted repeatedly within 30 sec to determine T_{gel} based on the criteria of "flow" (= sol) and "no flow" (= gel). This was repeated with a temperature increment of 1 °C per step. The measurements were repeated thrice at each temperature to determine the transition temperature in the phase diagram. Typical phase diagrams for the polymers are shown in **Figure S13**. Polymer concentrations were 20 wt.% for determine transition temperature in Table S1-S5, otherwise cited.

Temperature-dependent rheological measurements of the temperature-responsive sol-to-gel transition of the polymer solution in PBS (pH = 7.4) were performed using a dynamic rheometer (Thermo HAAKE RS600, Thermo Fisher Scientific, Waltham, MA, USA). A solvent trap was used to prevent solvent vaporization. The polymer concentration was 30 wt. %. Typically, each sample was placed between parallel plates (25 mm diameter and 1.0 mm gap) using a syringe. The data was collected under controlled stress (4.0 dyn/cm²) at a frequency of 1.0 rad/s. The heating rate was 0.5 °C/min. The storage modulus (G') and loss modulus (G') of the formulations were monitored in the range of 20-50 °C, and the gelation temperature (T_{gel}) was defined as the crossover point from G' to G''. Typical rheological measurements are shown in **Figure S14**.

Code	MW of PEG (g/mol) ^{a)}	MW of PCGA (g/mol) ^{b)}	CL/GA (mol/mol) ^{c)}	Total M_n (g/mol) ^{d)}	$M_{\rm w}/M_{\rm n}^{\rm e)}$	PCGA% ^{f)}	Morphology	T_{gel} (°C) ^{g)}	Other transition temperature (°C) ^{h)}
BAB1.1k-2.1k-2.4		2100	2.4	3200	1.5	65.6	Viscous liquid	N.D.	53 ⁱ⁾
BAB1.1k-2.5k-4.4		2500	4.4	3600	1.6	69.4	Sticky solid	N.D.	52 ⁱ⁾
BAB1.1k-2.9k-3.6		2900	3.6	4000	1.5	72.5	Sticky solid	N.D.	52 ⁱ⁾
BAB1.1k-3.3k-1.5		3300	1.5	4400	1.5	75.0	Viscous liquid	47	53 ^{j)} , 57 ⁱ⁾
BAB1.1k-3.4k-3.5		3400	3.5	4500	1.3	75.6	Powdery solid	43	54 ^{k)}
BAB1.1k-3.7k-4.7	550×2	3700	4.7	4800	1.3	77.1	Sticky solid	45	56 ^{k)}
BAB1.1k-3.8k-3.9		3800	3.9	4900	1.3	77.6	Powdery solid	42	58 ^{k)}
BAB1.1k-4.0k-3.1		4000	3.1	5100	1.5	78.4	Sticky solid	41	55 ^k)
BAB1.1k-4.3k-3.7		4300	3.7	5400	1.6	79.6	Powdery solid	N.D.	45 ⁱ⁾
BAB1.1k-4.9k-3.9		4900	3.9	6000	1.3	81.7	Powdery solid	N.D.	37 ⁱ⁾
BAB1.1k-5.6k-3.5		5600	3.5	6700	_	83.6	Powdery solid	- (insoluble)	- (insoluble)

Table S1. Characterization of PEG-PCGA-PEG triblock copolymers (BAB series)

a) as indicated by the supplier.

b) total molecular weight of PCGA segment connected with urethane bonds estimated by ¹H-NMR.

c) molar ratio of CL to GA found in the polymer, estimated by ¹H-NMR.

d) number-average molecular weight estimated by ¹H-NMR.

e) polydispersity index estimated by SEC.

f) Weight content of PCGA segment = $[(MW \text{ of total polymer}) - (MW \text{ of PEG unit})] / (MW \text{ of total polymer}) \times 100 (\%)$

g) sol-to-gel transition temperature determined by test tube inverting method.

h) transition temperature other than sol-to-gel shown as i)-k).

i) sol-to-precipitate transition.

j) gel-to-sol transition.

k) gel-to-precipitate transition.

N.D.: not detected, -: not determined.

Code	Terminal group	DS of terminal groups (%) b)	Morphology	$T_{\text{gel}}(^{\mathbf{o}}\mathbf{C})^{c)}$	$T_{\rm sol}({}^{\mathbf{o}}{\rm C}){}^{\rm d)}$	$T_{\rm prec} (^{\rm o}C)^{\rm e)}$
ABA-Ac ₀ (ABA1.5k-3.1k-3.4) ^a	None (-OH)	0	Powdery solid	42	45	53
ABA-Ac ₂₂		22.3	Powdery solid	40	45	57
ABA-Ac ₃₆	t- 1	36.5	Powdery solid	37	45	51
ABA-Ac ₅₂	acetyr	52.0	Powdery solid	36	46	54
ABA-Ac ₉₆		95.8	Sticky solid	34	48	51
ABA-Bu ₁₂		12.0	Powdery solid	39	44	53
ABA-Bu ₃₆		35.7	Powdery solid	35	44	50
ABA-Bu ₄₆		46.0	Powdery solid	33	46	50
ABA-Bu ₆₉	butyryl	68.7	Powdery solid	29	N.D.	38 ^{f)}
ABA-Bu ₈₂		82.3	Powdery solid	22	N.D.	35 ^{f)}
ABA-Bu ₈₉		89.2	Powdery solid	18	N.D.	34 ^{f)}
ABA-Bu ₉₁		91.3	Powdery solid	16	N.D.	34 ^{f)}

Table S2. Characterization of partially acetylated or butyrylated PCGA-PEG-PCGA triblock copolymers (ABA-Ac series and ABA-Bu series)

a) base polymer used to prepare ABA-Ac and ABA-Bu; MW of PEG = 1540, MW of PCGA = 1550×2 , CL/GA ratio = 3.4, total M_n = 4640, M_w/M_n = 1.3

b) degree of substitution of acetyl or butyryl groups (%).

c) sol-to-gel transition temperature determined by test tube inverting method.

d) gel-to-sol transition.

e) sol-to-precipitate transition otherwise cited.

f) gel-to-precipitate transition.

N.D.: not detected.

Code ^{a)}	MW of PCGA (g/mol) ^{b)}	CL/GA (mol/mol) ^{c)}	Total <i>M</i> _n (g/mol) ^{d)}	$M_{\rm w}/M_{\rm n}^{\rm e)}$	PCGA% ^{f)}	Morphology	$T_{\rm gel}({}^{\rm o}{\rm C})^{{ m g})}$	$T_{\rm prec} (^{\rm o}{\rm C})^{\rm h)}$
4-arm5.0k-3.6k	900 × 4	4.1	8600	1.5	42	Sticky solid	N.D.	60 ⁱ⁾
4-arm5.0k-7.2k	1800×4	3.6	12 200	1.6	59	Sticky solid	57	60
4-arm5.0k-7.6k	1900×4	3.4	12 600	1.9	60	Powdery solid	53	57
4-arm5.0k-8.0k	2000×4	4.1	13 000	1.7	62	Powdery solid	52	58
4-arm5.0k-8.8k	2200×4	3.8	13 800	1.9	64	Powdery solid	63	66
4-arm5.0k-12.0k	3000×4	3.4	17 000	2.2	71	Powdery solid	41	58
4-arm5.0k-12.4k	3100 × 4	3.3	17 400	2.0	71	Powdery solid	47	55
4-arm5.0k-13.6k	3400×4	3.2	18 600	1.1	73	Powdery solid	42	51
4-arm5.0k-16.0k	4000×4	3.2	21 000	1.1	76	Powdery solid	41	64
4-arm5.0k-20.0k	5000 × 4	4.0	25 000	2.5	80	Powdery solid	- (insoluble)	- (insoluble)

Table S3. Characterization of 4-arm PEG-PCGA copolymers (4-arm series)

a) MW of 4-arm PEG = 5000.

b) estimated by ¹H-NMR.

c) molar ratio of CL to GA found in the polymer, estimated by ¹H-NMR.

d) number-average molecular weight estimated by ¹H-NMR.

e) polydispersity index estimated by SEC.

f) weight content of PCGA segment = [(MW of total polymer) - (MW of PEG unit)] / (MW of total polymer) × 100 (%)

g) sol-to-gel transition temperature determined by test tube inverting method.

h) gel-to-precipitate transition otherwise cited.

i) sol-to-precipitate transition.

N.D.: not detected, -: not determined.

		-		
Code	DS of acetyl group ^{b)}	Morphology	$T_{\text{gel}}(^{\mathbf{o}}\mathrm{C})^{\mathrm{c})}$	$T_{\rm prec} (^{\rm o}C)^{\rm d}$
4-arm-Ac ₀ (4-arm5.0k-7.6k) ^{a)}	0.0	Powdery solid	53	57
4-arm-Ac ₁₈	17.5	Powdery solid	49	62
4-arm-Ac ₃₈	37.6	Sticky solid	49	65
4-arm-Ac ₅₆	56.5	Sticky solid	46	65
4-arm-Ac ₆₆	65.7	Sticky solid	44	64
4-arm-Ac95	94.7	Powdery solid	44	61

Table S4. Characterization of partially acetylated 4-arm PEG-PCGA copolymers (4-arm-Ac series)

a) base polymer used to prepare 4-arm-Ac; MW of 4-arm PEG = 5000, MW of PCGA = 1900×4 , CL/GA ratio = 3.4, total $M_n = 12600$, $M_w/M_n = 1.9$

b) degree of substitution of acetyl groups (%).

c) sol-to-gel transition temperature determined by test tube inverting method.

d) gel-to-precipitate transition.

Code	mp_1	ΔH_1	mp_2	ΔH_2	mp ₃	ΔH_3	$\Delta H_{\rm total}$		CI %	Xc	$T_{\rm gel}$	Mambalagy
	[°C]	[J/g]	[°C]	[J/g]	[°C]]	[J/g]	[J/g]	PCGA70	CL70	[%]	[°C]	Worphology
ABA1.5k-3.1k-3.4	23.0	46.0	-	-	-	-	46.0	66.8	52.1	63.3	42	Powdery solid
ABA1.5k-3.5k-3.4	21.9	44.3	-	-	-	-	44.3	66.9	54.1	58.7	38	Powdery solid
ABA1.5k-3.8k-3.1	22.6	16.4	27.4	1.0	-	-	17.4	71.2	54.2	23.0	33	Powdery solid
ABA1.5k-3.8k-3.5	20.7	13.5	27.7	4.4	-	-	17.9	71.2	55.8	23.0	33	Powdery solid
ABA1.5k-4.0k-3.7	20.9	15.5	34.5	2.0	-	-	17.5	72.2	57.3	21.9	33	Powdery solid
ABA1.5k-4.6k-3.5	21.8	11.4	30.1	9.9	-	-	21.3	74.9	58.7	26.0	insoluble	Powdery solid
BAB1.1k-3.3k-1.5	9.6	0.4	-	-	-	-	0.4	75.0	45.0	0.6	47	Viscous liquid
BAB1.1k-3.4k-3.5	22.1	5.7	29.6	5.4	-	-	11.1	75.6	58.8	13.5	43	Powdery solid
BAB1.1k-3.8k-3.9	27.1	8.5	35.5	17.8	-	-	26.3	77.6	61,7	30.6	42	Powdery solid
BAB1.1k-4.0k-3.1	14.0	0.9	21.3	1.0	29.8	14.5	16.4	78.4	59.3	19.8	41	Sticky solid

Table S5. Results of differential scanning calorimeter (DSC) analysis for PCGA-PEG-PCGA triblock copolymers (ABA series) and PEG-PCGA-PEG triblock copolymers (BAB series)

Scheme S1. Synthesis of PCGA-PEG-PCGA triblock copolymers (ABA series).

Scheme S2. Synthesis of PEG-PCGA-PEG triblock copolymer (BAB series).

Scheme S3. Synthesis of partially acetylated or butyrylated PCGA-PEG-PCGA (ABA-Ac series and ABA-Bu series).

Scheme S4. Synthesis of 4-arm PEG-PCGA (4-arm series) and partially acetylated 4-arm PEG-PCGA (4-arm-Ac series).

Figure S1(a). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA1.5k-2.4k-3.6.

Figure S1(b). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA1.5k-3.0k-3.5.

Figure S1(c). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA1.5k-3.1k-3.4.

Figure S1(d). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA1.5k-3.5k-3.4.

Figure S1(e). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA1.5k-3.6k-4.8.

Figure S1(f). ¹¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA1.5k-3.8k-3.5.

Figure S1(g). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA1.5k-4.0k-3.7.

Figure S1(h). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA1.5k-4.6k-3.5.

Figure S1(i). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA1.0k-2.0k-4.1.

Figure S1(j). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA1.0k-2.6k-3.6.

Figure S1(k). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA2.0k-4.6k-2.7.

Figure S2(a). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for BAB1.1k-2.1k-2.4.

Figure S2(b). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for BAB1.1k-2.5k-4.4.

Figure S2(c). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for BAB1.1k-2.9k-3.6.

Figure S2(d). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for BAB1.1k-3.7k-4.7.

Figure S2(e). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for BAB1.1k-3.8k-3.9.

Figure S2(f). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for BAB1.1k-4.3k-3.7.

Figure S3(a). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA-Ac₃₆.

Figure S3(b). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA-Ac₅₂.

Figure S3(c). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA-Ac₉₆.

Figure S3(d). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA-Bu₃₆.

Figure S4(a). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA-Bu₄₆.

Figure S4(b). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for ABA-Bu₉₁.

Figure S5(a). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for 4-arm5.0k-3.6k.

Figure S5(b). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for 4-arm5.0k-7.6k.

Figure S5(c). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for 4-arm5.0k-12.0k.

Figure S5(d). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for 4-arm5.0k-13.6k.

Figure S6(a). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for 4-arm-Ac₁₈.

Figure S6(b). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for 4-arm-Ac₅₆.

Figure S6(c). ¹H-NMR spectrum (in CDCl₃) and elution profile of SEC for 4-arm-Ac₉₅.

Figure S7. Photographs of PCGA-PEG-PCGA triblock copolymers (ABA1.5k series) synthesized with PEG₁₅₄₀.

ABA1.0k-1.8k-3.9 ABA1.0k-2.0k-3.7 ABA1.0k-2.0k-4.1

Sticky solid ABA1.0k-3.0k-3.4

Sticky solid

Sticky solid

Sticky solid

Figure S8. Photographs of PCGA-PEG-PCGA triblock copolymers (ABA1.0k series) synthesized with PEG₁₀₀₀.

Figure S9. Photographs of PEG-PCGA-PEG triblock copolymers (BAB series) synthesized.

Figure S10. Photographs of partially acetylated or butyrylated PCGA-PEG-PCGA (ABA-Ac series and ABA-Bu series) synthesized.

Figure S12. Photographs of partially acetylated 4-arm PEG-PCGA copolymers (4-arm-Ac series) synthesized.

Figure S13. Typical examples of phase diagram in PBS (pH = 7.4).

Figure S14. Typical examples of temperature-dependent storage (G', closed symbols) and loss moduli (G'', open symbols) estimated by reoplogical measuremants in PBS (pH = 7.4).

Figure S15. Effects of PCGA segment (PCGA%) content and CL/GA ratios on linear block copolymer morphology and transition modes.

PCGA% = [(MW of total polymer) - (MW of PEG unit)] / (MW of total polymer) × 100 (%)
Closed circle, triangle, and square: ABA1.5k series (MW of PEG = 1540); closed diamond:
ABA1.0k series (MW of PEG = 1000); double circle: ABA2.0k; open symbols: BAB series.
Circle: powdery solid, triangle and diamond: sticky solid; square: viscous liquid. Red, sol-to-gel; green, turbid sol-to-precipitate; blue, clear sol-to-precipitate; black, insoluble.

Figure S16. Relationship between gelation temperature (T_{gel}) and molar ration of CL unit to GA unit (CL/GA) for ABA and BAB triblock copolymers with similar MW PCGA segment length. For ABA series, copolymers with MW of PEG = 1.5k and MW of PCGA = 3.6k - 4.0k were shown. For BAB series, copolymers with MW of PCGA = 3.3k - 4.0k were shown. Closed red circle: ABA1.5k series (MW of PEG = 1540), open red circle: BAB series.

Figure S17. Results of differential scanning calorimetry for (A) ABA1.5k series and (B) BAB1.1k series, and (C) plots of T_{gel} vs. crystallinity (Xc). Closed symbol: ABA series and open symbols: BAB series. For each plot, sequence and PCGA% and CL/GA ratio were indicated in the blackets. The original data were shown in **Table S6**.

Figure S18. Comparison of the effect of MW of one PCGA segment (g/mol) on the gelation temperature (T_{gel}) for linear ABA triblock (ABA1.5k series) and 4-arm branched PEG-PCGA copolymers (4-arm series).

Circle: sol-to-gel transition, triangle: no gelation (sol-to-precipitate), square: insoluble. Blue: ABA1.5k series (MW of PEG = 1540); red:4-arm series.

References

- Y. Yoshida, K. Kawahara, K. Inamoto, S. Mitsumune, S. Ichikawa, A. Kuzuya and Y. Ohya, ACS Biomater. Sci. Eng., 2017, 3, 56.
- 2. Z. Jiang, Y. You, Q. Gu, J. Hao and X. Deng, Macromol. Rapid Commun., 2008, 29, 1264.
- 3. Y. Yoshida, A. Takahashi, A. Kuzuya and Y. Ohya, Polym. J., 2014, 46, 632.
- 4. K. Nagahama, T. Ouchi and Y. Ohya, Adv. Funct. Mater., 2008, 18, 1220.