Electronic supporting information for:

Polymers of intrinsic microporosity containing aryl-phthalimide moieties: Synthesis, modeling, and membrane gas transport properties

Fidel E. Rodríguez-González¹, Cenit Soto², Laura Palacio², Ana L. Montero-Alejo^{3*}, Néstor Escalona^{4,5}, Eduardo Schott⁶, Bibiana Comesaña-Gándara^{7*}, Claudio A. Terraza^{1,8*} and Alain Tundidor-Camba^{1,8*}

Experimental part

Monomers and polymers synthesis

3,4,5,6-tetrafluorophthalic anhydride [1]

According to a literature procedure,¹ in a 100 mL three-neck flask equipped with a reflux condenser, a dropping funnel and nitrogen inlet, 3,4,5,6-tetrafluorophthalic acid (30 g, 126 mmol) was added followed by dropwise addition of tionyl cloride (40 mL, 550 mmol) over 5 min at 60 °C. Then, the reaction mixture was stirred at 80 °C under nitrogen flow overnight. After removing the excess thionyl chloride by distillation, the resulting off-white solid was washed with *n*-hexane (2x20 mL) and dried under vacuum. Finally, the product was sublimated (75 °C, 10 mbar) to give a colorless crystalline solid (27.9 g, 117 mmol, 93%). Mp 94-95 °C; IR (KBr, v, cm⁻¹): 1869 (C=O, sym.), 1778 (C=O, asym.); 1520, 1401 (C=C); 1215 (C-O).

General procedure tetraflurophthalimide monomers synthesis

According to a modified literature procedure,² the appropriate amine (14.6 mmol) was dissolved in glacial acetic acid (20 mL) with stirring at room temperature. Subsequently, 1 (3.30 g, 15.0 mmol) was added and the system was refluxed for 16 h. The mixture was poured into an aqueous hydrochloric acid solution (9%, 400 mL) and stirred vigorously for 1 h. The suspended solid was collected by filtration under vacuum, washed with plenty of water and dried in the vacuum oven at 110 °C for 24 h.

3,4,5,6-tetrafluoro-N-phenylphthalimide [IM1]

Using the general procedure tetraflurophthalimide monomers synthesis, monomer **IM1** was obtained from aniline as a very pale-yellow solid (4.01 g, 93%). Mp 204-206 °C. IR (KBr, v, cm⁻¹): 3068 (C-H arom.); 1784, 1720 (C=O); 1597, 1512 (C=C); 947 (C-F). ¹H NMR (DMSO- d_6 , δ , ppm): 7.56 (t, J = 7.5 Hz, 2H, H-7); 7.48 (t, J = 7.3 Hz, 1H, H-8); 7.44 (d, J = 7.2 Hz, 2H, H-6). ¹³C NMR (DMSO- d_6 , δ , ppm): 161.82 (C1); 144.14 (d, J = 265 Hz, C-3); 142.66 (d, J = 266 Hz, C-4); 130.92 (C-5); 129.09 (C-7); 128.74 (C-8); 127.37 (C-6); 114.05 (C-2). Elem. Anal. Calcd. for C₁₄H₅F₄NO₂ (295.19): C, 56.96%; H, 1.71%; N, 4.75%. Found: C, 56.23%; H, 1.43%; N, 4.63%.

N-(2,6-dimethylphenyl)-3,4,5,6-tetrafluorophthalimide [IM2]

Using the general procedure tetraflurophthalimide monomers synthesis, monomer **IM2** was obtained from 2,6-dimethylaniline as a white powder (4.29 g, 91%). Mp 171-173 °C. IR (KBr, v, cm⁻¹): 3072 (C-H arom.); 2973, 2863 (C-H aliph.); 1789, 1711 (C=O); 1597, 1520 (C=C); 944 (C-F). ¹H NMR (DMSO- d_6 , δ , ppm): 7.34 (t, J = 7.3 Hz, 1H, H-8); 7.25 (t, J = 7.3 Hz, 2H, H-7); 2.11 (s, 6H, H-9). ¹³C NMR (DMSO- d_6 , δ , ppm): 161.33 (C-1); 144.37 (d, J = 264 Hz, C-3); 142.80 (d, J = 266 Hz, C-4); 136.73 (C-6); 129.72 (C-8); 128.73 (C-5); 128.42 (C-7); 113.79 (C-2); 17.42 (C-9). Elem. Anal. Calcd. for C₁₆H₉F₄NO₂ (323.25): C, 59.45%; H, 2.81%; N, 4.33%. Found: C, 59.23%; H, 2.67%; N, 4.15%.

N-(2,6-diethylphenyl)-3,4,5,6-tetrafluorophthalimide [IM3]

Using the general procedure tetraflurophthalimide monomers synthesis, monomer **IM3** was obtained from 2,6-diethylaniline as a colorless solid (4.58 g, 89%). Mp 181-183 °C. IR (KBr, v, cm⁻¹): 3067 (C-H arom.); 2973, 2935, 2872 (C-H aliph.); 1788, 1711 (C=O); 1597, 1522 (C=C); 944 (C-F). ¹H NMR (DMSO- d_6 , δ , ppm): 7.46 (t, J = 7.7 Hz, 1H, H-8); 7.30 (t, J = 7.7 Hz, 2H, H-7); 2.41 (d, J = 7.5 Hz, 4H, H-9); 1.05 (t, J = 7.5 Hz, 6H, H-10). ¹³C NMR (DMSO- d_6 , δ , ppm): 161.33 (C-1); 144.37 (d, J = 264 Hz, C-3); 142.80 (d, J = 266 Hz, C-4); 136.73 (C-6); 129.72 (C-8); 128.73 (C-5); 128.42 (C-7); 113.79 (C-3); 24.10 (C-9) 14.30 (C-10). Elem. Anal. Calcd. for C₁₈H₁₃F₄NO₂ (351.30): C, 61.54%; H, 3.73%; N, 3.99%. Found: C, 61.37%; H, 3.61%; N, 3.87%.

N-(2,6-diisopropylphenyl)-3,4,5,6-tetrafluorophthalimide [IM4]

Using the general procedure tetraflurophthalimide monomers synthesis, monomer **IM4** was obtained from 2,6-diisopropylaniline as a white powder (5.08 g, 92%). Mp 184-185 °C. IR (KBr, v, cm⁻¹): 3078 (C-H arom); 2970, 2874 (C-H aliph.); 1786, 1722 (C=O); 1591, 1513 (C=C); 948 (C-F). ¹H NMR (DMSO- d_6 , δ , ppm): 7,52 (t, J = 7,8 Hz, 1H, H-8); 7,37 (d, J = 7,8 Hz, 2H, H-7); 2,74 (hept., J = 6.8 Hz, 2H, H-9); 1,09 (d, J = 6,8 Hz, 12H, H-10). ¹³C NMR (DMSO- d_6 , δ , ppm): 162.40 (C-1); 147.05 (C6); 144.59 (d, J = 265 Hz, C-3); 143.03 (d, J = 268 Hz, C-4); 130.57 (C-8); 125.63 (C-5); 124.10 (C-7); 113,52 (C-3); 28.43 (C-9); 23.76 (C-10). Elem. Anal. Calcd. for C₂₀H₁₇F₄NO₂ (379.35): C, 63.32%; H, 4.52%; N, 3.69%. Found: C, 63.21%; H, 4.33%; N, 3.52%.

3,4,5,6-tetrafluoro-*N*-(2,4,6-trimethylphenyl)phthalimide [IM5]

Using the general procedure tetraflurophthalimide monomers synthesis, monomer **IM5** was obtained from 2,4,6-trimethylaniline as a white powder (4.57 g, 93%). Mp 166 °C. IR (KBr, v, cm⁻¹): 3086 (C-H arom); 2923, 2861 (C-H aliph.); 1785, 1725 (C=O); 1507 (C=C); 945 (C-F). ¹H NMR (DMSO- d_6 , δ , ppm): 7.05 (s, 2H, H-7); 2.30 (s, 3H, H-10); 2.06 (s, 6H, H-9). ¹³C NMR (DMSO- d_6 , δ , ppm):

161.47 (C-1); 144.37 (d, J = 265 Hz, C-3); 142.88 (d, J = 266 Hz, C-4); 139.25 (C-8); 136.34 (C-6) 129.00 (C-7); 126.09 (C-5); 113.79 (C-2); 20.58 (C-10); 17.34 (C-9). Elem. Anal. Calcd. For $C_{17}H_{11}F_4NO_2$ (337.27): Elemental Analysis: C, 60.54%; H, 3.29%; N, 4.15%. Found: C, 60.25%; H, 3.13%; N, 4.08%.

General synthetic procedure for dibenzodioxin-based polymers

The commercially available monomer TTSBI was previously washed in chloroform, recrystallized in isopropanol and dried in the vacuum oven at 80 °C for 24 h. A mixture of **TTSBI** (1.0213 g, 3.000 mmol), the appropriate tetraflurophthalimide monomer (3,000 mmol) and anhydrous potassium carbonate (3.3200 g, 24.00 mmol) in dry DMF was stirred under nitrogen for 72 h at 65 °C. The reaction crude was cooled to room temperature and poured into water (500 mL) with stirring. The precipitate was collected by filtration, washed with water, acetone and methanol, and then dried in the vacuum oven at 110 °C.

PIM-SBI-IM1

Using the general synthetic procedure for dibenzodioxin-based polymerization, **PIM-SBI-IM1** was synthesized from **IM1** (0.8856 g, 3.000 mmol) in dry DMF (25 mL). After that, the product was refluxed in THF, chloroform and finally in methanol for 6 h. The polymer was collected by filtration and dried under vacuum at 110 °C overnight. The final product was obtained as a yellow powder (1.56 g, 93%, based on the repeat unit). ATR-IR (film, v, cm⁻¹): 2957, 2934, 2867 (C-H aliph.); 1770, 1720 (C=O); 1595, 1454 (C=C); 1362 (C-N); 1294, 1091 (C-O-C); 873, 810, 756, 689 (C–H out of plane). TGA (nitrogen): the 5% weight loss due to thermal decomposition was at 415 °C.

PIM-SBI-IM2

Using the general synthetic procedure for dibenzodioxin-based polymerization, **PIM-SBI-IM2** was synthesized from **IM2** (0.9698 g, 3.000 mmol) in dry DMF (27 mL). After that, the product was dissolved in THF and reprecipitated twice by dropwise addition of methanol with stirring. The solid was redissolved in tetrahydrofuran and precipitated in excess methanol, filtered under vacuum and refluxed in methanol for 6 h. Finally, the polymer was collected and dried under vacuum at 110 °C overnight. The final product was obtained as a yellow solid (1.33 g, 76%, based on the repeat unit). ATR-IR (film, v, cm⁻¹): 2954, 2927, 2863 (C-H aliph.); 1770, 1720 (C=O); 1595, 1456 (C=C); 1362 (C-N); 1292, 1090 (C-O-C); 873, 814, 756, 694 (C–H out of plane). ¹H NMR (CDCl₃, δ , ppm): 7.30-6.98 (broad peak, 3H, H-5 and H-6); 6.98-6.66 (broad peak, 2H, H-2); 6.47 (broad peak, 2H, H-1); 2.31 (broad peak, 2H, H-3); 2.26-2.00 (broad peak, 2H, H-3'and H-7); 1.33 (broad peak, 12H, H-4). BET surface area = 471 m² g⁻¹; TGA (nitrogen): the 5% weight loss due to thermal decomposition was at 549 °C. η_{inh} = 1.36 dL g⁻¹.

PIM-SBI-IM3

Using the general synthetic procedure for dibenzodioxin-based polymerization, **PIM-SBI-IM3** was synthesized from **IM3** (1.0539 g, 3.000 mmol) in dry DMF (32 mL). The polymer was purified following the procedure used for **PIM-SBI-IM2**. The final product was obtained as a yellow solid (1.51 g, 82%, based on the repeat unit). ATR-IR (film, v, cm⁻¹): 2956, 2929, 2866 (C-H aliph.); 1770,

1720 (C=O); 1594, 1454 (C=C); 1362 (C-N); 1294, 1090 (C-O-C); 874, 815, 757, 696 (C–H out of plane). ¹H NMR (CDCl₃, δ , ppm): 7.34 (broad peak, 1H, H-6); 7.18 (broad peak, 2H, H-5); 6.96-6.68 (broad peak, 2H, H-2); 6.49 (broad peak, 2H, H-1); 2.62-2.24 (broad peak, 6H, H-3 and H-7); 2.17 (broad peak, 2H, H-3'); 1.30 (broad peak, 12H, H-4); 1.12 (broad peak, 6H, H-8). BET surface area = 434 m² g⁻¹. TGA (nitrogen): the 5% weight loss due to thermal decomposition was at 549 °C. $\eta_{inh} = 1.27$ dL g⁻¹

PIM-SBI-IM4

Using the general synthetic procedure for dibenzodioxin-based polymerization, **PIM-SBI-IM4** was synthesized from **IM4** (1.1381 g, 3.000 mmol) in dry DMF (34 mL). The polymer was purified following the procedure used for **PIM-SBI-IM2**. The final product was obtained as a yellow solid (1.53 g, 80%, based on the repeat unit). ATR-IR (film, v, cm⁻¹): 2958, 2928, 2870 (C-H aliph.); 1770, 1720 (C=O); 1595, 1456 (C=C); 1362 (C-N); 1298, 1087 (C-O-C); 874, 816, 757, 737, 693 (C-H out of plane). ¹H NMR (CDCl₃, δ , ppm): 7.41 (broad peak, 1H, H-6); 7.23 (broad peak, 2H, H-5); 6.99-6.68 (broad peak, 2H, H-2); 6.51 (broad peak, 2H, H-1); 2.68 (broad peak, 2H, H-7); 2.32 (broad peak, 2H, H-3); 2.17 (broad peak, 2H, H-3'); 1.30 (broad peak, 12H, H-4); 1.15 (broad peak, 12H, H-8). BET surface area = 661 m² g⁻¹. TGA (nitrogen): the 5% weight loss due to thermal decomposition was at 537 °C. η_{inh} = 1.41 dL g⁻¹

PIM-SBI-IM5

Using the general synthetic procedure for dibenzodioxin-based polymerization, **PIM-SBI-IM5** was synthesized from **IM5** (1.0118 g, 3.000 mmol) in dry DMF (30 mL). The polymer was purified following the procedure used for **SBI-IM2**. The final product was obtained as a yellow solid (1.49 g, 83%, based on the repeat unit). ATR-IR (film, v, cm⁻¹): 2954, 2927, 2863 (C-H aliph.); 1770, 1720 (C=O); 1595, 1456 (C=C); 1362 (C-N); 1294, 1091 (C-O-C); 874, 806, 759, 746 (C-H out of plane). ¹H NMR (CDCl₃, δ , ppm): 7.05-6.68 (broad peak, 4H, H-2 and H-5); 6.49 (broad peak, 2H, H-1); 2.45-2.32 (broad peak, 5H, H-3 and H-6); 2.22-1.85 (broad peak, 8H, H-3' and H-7); 1.30 (broad peak, 12H, H-4). BET surface area = 495 m² g⁻¹. TGA (nitrogen): the 5% weight loss due to thermal decomposition was at 541 °C. $\eta_{inh} = 1.21$ dL g⁻¹

Fig. ESI1. Representation of the repeating units used for building the **PIM-1** models. The red label corresponds to **Table ESI1**, which gives atom types and partial charges.

Table ESI1. Force field atom type and partial charges assigned to the atoms and pseudo-atoms of

Label	Atom type (GAFF)	Atom type (used)*	Charge	Label	Atom type (GAFF)	Atom type (used)*	Charge
1	ca	CS0	+0.172	19	c3	CH0	+0.098
2	ca	CS0	+0.172	20	c3	CH3	0.000
3	ca	CA0	-0.123	21	c3	CH3	0.000
4	ca	CA0	-0.123	22	c3	CH2	-0.016
5	c1	CL0	+0.314	23	c3	CH0	+0.098
6	c1	CL0	+0.314	24	c3	CH2	-0.016
7	n1	NL0	-0.410	25	c3	CH0	+0.098
8	nl	NL0	-0.410	26	c3	CH3	0.000
9	ca	CSO	+0.172	27	c3	CH3	0.000
10	ca	CSO	+0.172	28	ca	CA0	+0.038
11	os	OA0	-0.219	29	ca	CA0	+0.038
12	os	OA0	-0.219	30	ca	CA1	-0.125
13	ca	CS0	+0.178	31	ca	CA1	-0.125
14	ca	CS0	+0.178	32	ca	CS0	0.178
15	ca	CA1	-0.125	33	ca	CS0	0.178
16	ca	CA1	-0.125	34	os	OA0	-0.219
17	ca	CA0	+0.038	35	os	OA0	-0.219
18	ca	CA0	+0.038				

PIM-1 models. Atom labels refer to those shown in Fig. ESI1.

Fig. ESI2. Representation of the repeating units used for building the **PIM-SBI-IM2** models. The red labels correspond to **Table ESI2**, which gives atom types and partial charges.

Label	Atom type (GAFF)	Atom type (used)*	Charge	Label	Atom type (GAFF)	Atom type (used)*	Charge
1	ca	CA1	+0.139 23		ca	CS0	+0.214
2	ca	CA1	-0.197	24	ca	CA1	-0.131
3	ca	CA1	-0.197	25	ca	CA1	-0.099
4	ca	CA0	+0.276	26	ca	CA0	-0.127
5	ca	CA0	+0.276	27	ca	CA0	-0.125
6	ca	CA0	-0.128	28	c3	CH0	+0.713
7	c3	CH3	-0.028	29	c3	CH2	-0.355
8	c3	CH3	-0.028	30	c3	CH0	+0.668
9	n	N	-0.470	31	c3	CH3	-0.158
10	с	С	+0.955	32	c3	CH3	-0.141
11	с	С	+0.955	33	c3	CH2	-0.355
12	0	0	-0.609	34	c3	CH0	+0.668
13	0	0	-0.609	35	c3	CH3	-0.158
14	ca	CS0	+0.346	36	c3	CH3	-0.141
15	ca	CS0	+0.121	37	ca	CA0	-0.127
16	ca	CA0	-0.390	38	ca	CA0	-0.125
17	ca	CA0	+0.121	39	ca	CA1	-0.099
18	ca	CS0	-0.390	40	ca	CS0	+0.214
19	ca	CS0	+0.346	41	ca	CS0	+0.285
20	os	OA0	-0.316	42	ca	CA1	-0.131
21	os	OA0	-0.316	43	os	OA0	-0.316
22	ca	CS0	+0.285	44	OS	OA0	-0.316

Table ESI2. Force field atom type and partial charges assigned to the atoms and pseudo-atoms of**PIM-SBI-IM2** models. Atom labels refer to those shown in Fig. ESI2.

Fig. ESI3. Representation of the repeating units used for building the **PIM-SBI-IM3** models. The red labels correspond to **Table ESI3**, which gives atom types and partial charges.

Label	Atom type (GAFF)	Atom type (used)*	Charge	Label	Atom type (GAFF)	Atom type (used)*	Charge
1	ca	CA1	0.074 24		ca	CA1	-0.132
2	ca	CA1	-0.113 25		ca	CA1	-0.116
3	ca	CA1	-0.113	26	ca	CA0	-0.139
4	ca	CA0	0.098	27	ca	CA0	-0.090
5	ca	CA0	0.098	28	c3	CH0	0.669
6	ca	CA0	0.046	29	c3	CH2	-0.356
7	c3	CH2	0.117	30	c3	CH0	0.648
8	c3	CH2	0.117 31		c3	CH3	-0.140
9	n	N	-0.687	32	c3	CH3	-0.140
10	с	С	1.012	33	c3	CH2	-0.356
11	с	С	1.012	34	c3	CH0	0.648
12	0	0	-0.614	35	c3	CH3	-0.140
13	0	0	-0.614 36		c3	CH3	-0.140
14	ca	CS0	0.325 37		ca	CA0	-0.139
15	ca	CS0	0.128	38	ca	CA0	-0.090
16	ca	CA0	-0.376	39	ca	CA1	-0.116
17	ca	CA0	0.128	40	ca	CS0	0.249
18	ca	CS0	-0.376	41	ca	CS0	0.264
19	ca	CS0	0.325	42	ca	CA1	-0.132
20	os	OA0	-0.318	43	os	OA0	-0.318
21	os	OA0	-0.318	44	os	OA0	-0.318
22	ca	CS0	0.264	45	c3	CH3	-0.040
23	ca	CS0	0.249	46	c3	CH3	-0.040

Table ESI3. Force field atom type and partial charges assigned to the atoms and pseudo-atoms of**PIM-SBI-IM3** models. Atom labels refer to those shown in Fig. ESI3.

Fig. ESI4. Representation of the repeating units used for building the **PIM-SBI-IM4** models. The red labels correspond to **Table ESI4**, which gives atom types and partial charges.

Table ESI4. Force field atom type and partial charges assigned to the atoms and pseudo-atoms of**PIM-SBI-IM4** models. Atom labels refer to those shown in Fig. ESI4.

Label	Atom type (GAFF)	Atom type (used)*	Charge		Label	Atom type (GAFF)	Atom type (used)*	Charge
1	ca	CA1	0.083		25	ca	CA1	-0.122
2	ca	CA1	-0.117		26	ca	CA0	-0.150
3	ca	CA1	-0.117		27	ca	CA0	-0.089
4	ca	CA0	0.073		28	c3	CH0	0.747
5	ca	CA0	0.073		29	c3	CH2	-0.397
6	ca	CA0	-0.050		30	c3	CH0	0.704
7	c3	CH1	0.301		31	c3	CH3	-0.151
8	c3	CH1	0.301		32	c3	CH3	-0.151
9	n	N	-0.416		33	c3	CH2	-0.397
10	с	С	0.893		34	c3	CH0	0.704
11	с	С	0.893		35	c3	CH3	-0.151
12	0	0	-0.604		36	c3	CH3	-0.151
13	0	0	-0.604		37	ca	CA0	-0.150
14	ca	CS0	0.307		38	ca	CA0	-0.089
15	ca	CS0	0.126		39	ca	CA1	-0.122
16	ca	CA0	-0.346		40	ca	CS0	0.239
17	ca	CA0	0.126		41	ca	CS0	0.267
18	ca	CS0	-0.346		42	ca	CA1	-0.125
19	ca	CS0	0.307		43	os	OA0	-0.308
20	os	OA0	-0.308		44	os	OA0	-0.308
21	os	OA0	-0.308		45	c3	CH3	-0.112
22	ca	CS0	0.267		46	c3	CH3	-0.112
23	ca	CS0	0.239		47	c3	CH3	-0.112
24	ca	CA1	-0.125		48	c3	CH3	-0.112

Fig. ESI5. Representation of the repeating units used for building the **PIM-SBI-IM5** models. The red labels correspond to **Table ESI5**, which gives atom types and partial charges.

Table ESI5. Force field atom type and partial charges assigned to the atoms and pseudo-atoms of**PIM-SBI-IM5** models. Atom labels refer to those shown in Fig. ESI5.

Label	Atom type (GAFF)	Atom type (used)*	Charge		Label	Atom type (GAFF)	Atom type (used)*	Charge
1	ca	CA0	0.309 24		24	ca	CA1	-0.131
2	ca	CA1	-0.297		25	ca	CA1	-0.115
3	ca	CA1	-0.297		26	ca	CA0	-0.148
4	ca	CA0	0.308		27	ca	CA0	-0.094
5	ca	CA0	0.308		28	c3	CH0	0.715
6	ca	CA0	-0.175		29	c3	CH2	-0.381
7	c3	CH3	-0.021		30	c3	CH0	0.684
8	c3	CH3	-0.021		31	c3	CH3	-0.148
9	n	N	-0.462		32	c3	CH3	-0.148
10	с	С	0.939		33	c3	CH2	-0.381
11	с	С	0.939		34	c3	CH0	0.684
12	0	0	-0.601		35	c3	CH3	-0.148
13	0	Ο	-0.601		36	c3	CH3	-0.148
14	ca	CS0	0.344		37	ca	CA0	-0.148
15	ca	CS0	0.116		38	ca	CA0	-0.094
16	ca	CA0	-0.377		39	ca	CA1	-0.115
17	ca	CA0	0.116		40	ca	CS0	0.245
18	ca	CS0	-0.377		41	ca	CS0	0.261
19	ca	CS0	0.344		42	ca	CA1	-0.131
20	os	OA0	-0.315		43	os	OA0	-0.315
21	os	OA0	-0.315		44	os	OA0	-0.315
22	ca	CS0	0.261		45	c3	CH3	0.001
23	ca	CS0	0.245					

Fig. ESI6. Full assignment of ¹H NMR spectra in DMSO- d_6 of the tetrafluorophtalimide monomers IM(1-5).

Fig. ESI7. ATR-IR spectra of the polymers PIM-SBI-IM(2-5).

Fig. ESI8. Full assignment of ¹H NMR spectra in CDCl₃ of the polymers PIM-SBI-IM(2-5).

Fig. ESI9. Transparent robust self-standing films of PIM-SBI-IM2. The same results were obtained for PIM-SBI-IM3, PIM-SBI-IM4 and PIM-SBI-IM5 membranes.

Fig. ESI10. Histograms of the dihedral angles that were calculated from the final **PIM-1** models. The dihedral angle belonging to the spirocenter is highlighted with green color, and the other three

(orange, pink and blue) are those involved with the planarity of the dibenzodioxin rings.

Fig. ESI11. Histograms of the dihedral angles that were calculated from the final **PIM-SBI-IM2** models. The dihedral angle belonging to the spirocenter is highlighted with green color, and the other three (orange, pink and blue) are those involved with the planarity of the dibenzodioxin rings.

Fig. ESI12. Histograms of the dihedral angles that were calculated from the final **PIM-SBI-IM3** models. The dihedral angle belonging to the spirocenter is highlighted with green color, and the other three (orange, pink and blue) are those involved with the planarity of the dibenzodioxin rings.

Fig. ESI13. Histograms of the dihedral angles that were calculated from the final **PIM-SBI-IM4** models. The dihedral angle belonging to the spirocenter is highlighted with green color, and the other three (orange, pink and blue) are those involved with the planarity of the dibenzodioxin rings.

Fig. ESI14. Histograms of the dihedral angles that were calculated from the final **PIM-SBI-IM5** models. The dihedral angle belonging to the spirocenter is highlighted with green color, and the other three (orange, pink and blue) are those involved with the planarity of the dibenzodioxin rings.

Fig. ESI15. Spirocenter-spirocenter radial distribution functions for **PIM-SBI-IM(2-5)** polymeric models. All polymers show two prominent peaks around 15 A° due to adjacent spirocenters on the same chain. At shorter distances, the peaks are attributed to interchain spirocenter spacing.

	U				•	<i>,</i> ,			
Diffusion coefficient (D_i)Polymer $[10^{-8} \mathrm{cm}^2 \mathrm{s}^{-1}]$				Solubility coefficient (S_i) [10 ⁻² cm ³ (STP) cm ⁻³ cmHg ⁻¹]					
	N ₂	O ₂	CH_4	CO ₂	_	N ₂	O ₂	CH_4	CO ₂
PIM-SBI-IM2	30.3	106	10.2	49.7	_	2.68	2.82	12.0	27.4
(122 days)	(3.29)	(16.7)	(0.950)	(6.62)		(2.46)	(2.52)	(11.7)	(26.3)
PIM-SBI-IM3	27.4	90.6	11.2	42.7		2.94	3.08	12.5	32.6
(121 days)	(17.9)	(64.2)	(7.42)	(30.1)		(2.99)	(3.10)	(11.8)	(31.3)
PIM-SBI-IM4	107	321	51.0	156.3		2.88	2.97	10.5	30.1
(63 days)	(88.4)	(288)	(39.0)	(139.2)		(2.93)	(3.01)	(10.6)	(30.2)
PIM-SBI-IM5	41.6	138	15.4	65.0		3.20	3.24	13.0	33.3
(92 days)	(27.4)	(94.3)	(9.50)	(44.0)		(2.91)	(2.96)	(12.8)	(30.2)

Table ESI6. Diffusivity and solubility coefficients of methanol treated **PIM-SBI-IM(2-5)**membranes and data from aged films (between 92 and 122 days) in parentheses.

Dolumor	Diffusiv	vity-selectivity	$_{\rm y} (D_i/D_j)$	Solub	Solubility-selectivity (S_i/S_j)			
Folymer	O ₂ /N ₂	$\rm CO_2/\rm CH_4$	CO_2/N_2	O ₂ /N ₂	$\rm CO_2/\rm CH_4$	CO_2/N_2		
PIM-SBI-IM2	3.51	4.89	1.64	1.05	2.28	10.22		
(122 days)	5.06	6.97	2.01	1.02	2.25	10.69		
PIM-SBI-IM3	3.30	3.82	1.56	1.05	2.61	11.09		
(121 days)	3.59	4.05	1.68	1.04	2.65	10.47		
PIM-SBI-IM4	2.99	3.06	1.46	1.03	2.87	10.45		
(63 days)	3.26	3.57	1.57	1.03	2.85	10.31		
PIM-SBI-IM5	3.31	4.23	1.56	1.01	2.56	10.41		
(92 days)	3.45	4.62	1.61	1.02	2.36	10.38		

Table ESI7. Diffusivity-selectivity and Solubility-selectivity of methanol treated **PIM-SBI-IM(2-5)**membranes and data from aged films (between 92 and 122 days) in parentheses.

References

- 1 J. F. Tannaci, M. Noji, J. McBee and T. D. Tilley, *J Org Chem*, 2007, **72**, 5567–5573.
- 2 S. Makhseed, F. Ibrahim and J. Samuel, *Polymer*, 2012, **53**, 2964–2972.