Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information for

Engineering thiospinel-based hollow heterostructured nanoarrays for

boosting electrocatalytic oxygen evolution reaction

Kun Wang, Qing Wang, Lei Jin, Bingji Huang, Hui Xu*, Xingyue Qian, Haiqun

Chen*, Guangyu He*

Key Laboratory of Advanced Catalytic Materials and Technology, Advanced

Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou

University, Changzhou, Jiangsu Province 213164, China.

Corresponding authors: xuhui006@cczu.edu.cn (H. Xu); hqchen@cczu.edu.cn (H.

Chen); hegy@cczu.edu.cn (G. He)

Fig.S1 SEM image of $Ni_3S_2/NiCo_2S_4@NF$.

Fig.S2 (a, b) SEM images and (c, d) TEM images of the NiCo-LDH@NF.

Fig.S3 XRD pattern of NiCo-LDH@NF.

Fig.S4 XRD pattern of Ni₃S₂@NF.

Fig.S5 OER polarization curves of $Ni_3S_2/NiCo_2S_4@NF$ in (a) 0.1 M KOH, (b) PBS and (c) 0.05 M H_2SO_4 electrolyte.

Fig.S6 Cyclic voltammograms in a capacitive current region at a scan rate ranging from 20 to 200 mV·s⁻¹. (a) Ni₃S₂/NiCo₂S₄@NF, (b) NiCo-LDH@NF, (c) Ni₃S₂@NF and (d) NF.

Fig.S7 Chronopotentiometry test of Ni₃S₂@NF, NiCo-LDH@NF, and NF at a constant current density of 100 mA \cdot cm⁻².

Fig.S8 Chronoamperometry test of $Ni_3S_2/NiCo_2S_4@NF$.

Fig.S9 XRD pattern of Ni₃S₂/NiCo₂S₄@NF before and after a continuous 200 h stability test.

Fig.S11 Cyclic voltammograms in a capacitive current region at a scan rate from 20 to 200 mV·s⁻¹. (a) $Ni_3S_2/Ni_3S_4@NF$, (b) $Ni_3S_2/Co_3S_4@NF$, (c) $Ni_3S_2/CuCo_2S_4@NF$ and (d) $Ni_3S_2/FeNi_2S_4@NF$.

Catalysts	Electrolyte	Overpotential	Reference
Ni ₃ S ₂ /NiCo ₂ S ₄ @NF	1.0 M KOH	177 mV at 100 mA·cm ⁻²	This Work
NiCo ₂ S ₄ @NiFe-LDH@NF	1.0 M KOH	201 mV at 60 mA·cm ⁻²	1
P-NiCo ₂ S ₄ @NF	1.0 M KOH	300 mV at $50 \text{ mA} \cdot \text{cm}^{-2}$	2
Mn-NiCo ₂ S ₄ @NF	1.0 M KOH	220 mV at 10 mA·cm ⁻²	3
NiCo ₂ S ₄ /NiFeP@NF	1.0 M KOH	293 mV at 100 mA·cm ⁻²	4
NiCo ₂ S ₄ @NF	1.0 M KOH	279 mV at 50 mA \cdot cm ⁻²	5
NiCo ₂ S ₄ @N-rGO@NF	1.0 M KOH	230 mV at 10 mA·cm ⁻²	6
MoS ₂ /NiCo ₂ S ₄ @NF	1.0 M KOH	220 mV at 10 mA·cm ⁻²	7
Ru-NiCo ₂ S _{4-x} @NF	1.0 M KOH	330 mV at 100 mA · cm ⁻²	8
CuCo ₂ S ₄ /NiCo ₂ S ₄ @NF	1.0 M KOH	271 mV at $10\text{mA}\cdot\text{cm}^{-2}$	9
NiCo ₂ S ₄ @NF	1.0 M KOH	319 mV at 100 mA·cm ⁻²	10
NiCo ₂ S ₄ @NF	1.0 M KOH	260 mV at 10 mA·cm ⁻²	11

 Table S1 OER activity comparison of different catalysts in alkaline condition.

References

1. J. Liu, J. Wang, B. Zhang, Y. Ruan, L. Lv, X. Ji, K. Xu, L. Miao and J. Jiang, Hierarchical NiCo₂S₄@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity, *ACS Appl. Mater. Interfaces*, 2017, 9, 15364-15372.

2. K. Min, R. Yoo, S. Kim, H. Kim, S. E. Shim, D. Lim and S.-H. Baeck, Facile synthesis of P-doped NiCo₂S₄ nanoneedles supported on Ni foam as highly efficient electrocatalysts for alkaline oxygen evolution reaction, *Electrochim. Acta*, 2021, 396, 139236.

3. X. Yu, S. Xu, X. Liu, X. Cheng, Y. Du and Q. Wu, Mn-doped NiCo₂S₄ nanosheet array as an efficient and durable electrocatalyst for oxygen evolution reaction, *J. Alloys Compd.*, 2021, 878, 160388.

4. J. Jiang, F. Li, H. Su, Y. Gao, N. Li and L. Ge, Flower-like $NiCo_2S_4/NiFeP/NF$ composite material as an effective electrocatalyst with high overall water splitting performance, *Chin Chem Lett*, 2021.

5. Y. Gong, J. Wang, Y. Lin, Z. Yang, H. Pan and Z. Xu, Synthesis of 1D to 3D nanostructured NiCo₂S₄ on nickel foam and their application in oxygen evolution reaction, *Appl. Surf. Sci.*, 2019, 476, 600-607.

6. H. S. Lee, J. Pan, G. S. Gund and H. S. Park, Vertically Aligned NiCo₂S₄ Nanosheets Deposited on N-Doped Graphene for Bifunctional and Durable Electrode of Overall Water Splitting, *Adv. Mater. Interfaces*, 2020, 7, 2000138.

7. X. Xu, W. Zhong, L. Zhang, G. Liu, W. Xu, Y. Zhang and Y. Du, NiCo-LDHs derived $NiCo_2S_4$ nanostructure coated by MoS_2 nanosheets as high-efficiency bifunctional electrocatalysts for overall water splitting, *Surf. Coat. Technol.*, 2020, 397, 126065.

8. H. Su, S. Song, Y. Gao, N. Li, Y. Fu, L. Ge, W. Song, J. Liu and T. Ma, In Situ Electronic Redistribution Tuning of NiCo₂S₄ Nanosheets for Enhanced Electrocatalysis, *Adv. Funct. Mater.*, 2021, 2109731.

9. L. Ma, J. Liang, T. Chen, Y. Liu, S. Li and G. Fang, 3D CuCo₂S₄/NiCo₂S₄ coreshell composites as efficient bifunctional electrocatalyst electrodes for overall water splitting, Electrochim. Acta, 2019, 326, 135002.

10. J. Yu, C. Lv, L. Zhao, L. Zhang, Z. Wang and Q. Liu, Reverse Microemulsion-Assisted Synthesis of $NiCo_2S_4$ Nanoflakes Supported on Nickel Foam for Electrochemical Overall Water Splitting, *Adv. Mater. Interfaces*, 2018, 5, 1701396.

11. A. Sivanantham, P. Ganesan and S. Shanmugam, Hierarchical NiCo₂S₄ nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions, *Adv. Funct. Mater.*, 2016, 26, 4661-4672.