Supporting Information for

Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS₂ nanowires array

Junrong Hou^{a,b,†}, Xianyun Peng^{c,d,}†*, Jiaqiang Sun^e, Shusheng Zhang^f, Qian Liu^g, Xinzhong Wang^a*, Jun Luo^h, and Xijun Liu^b*

- ^a Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
- ^b MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments, and Materials, Guangxi University, Nanning 530004, China.
- ^c Institute of Zhejiang University–Quzhou, Quzhou 324000, China.
- ^d Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- ^e State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
- ^f College of Chemistry, Zhengzhou University, Zhengzhou 450000, China.
- ^g Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
- ^h Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of

Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

- [†] The authors contributed equally to this work.
- * Corresponding author (email: xianyunpeng@zju.edu.cn; wangxz@sziit.com.cn; xjliu@tjut.edu.cn)

Figure S1. The different views of the optimized structural model for (a, c) CoS₂(001) and (b, d) Mn-

CoS₂(001).

Figure S2. The calculated electronic band structure and the corresponding DOS results of the CoS_2 .

Figure S3. The different views of the optimized structural model of the adsorption of hydrogen over the surface (a, c) $CoS_2(001)$ and (b, d) Mn-CoS₂(001).

Figure S4. The charge density difference contour plot in the Co-H and Mn-H region, the red and blue colors represent the accumulation and depletion of electrons, respectively.

Figure S5. The adsorption energy for the N_2H_4 molecule over the surface of the catalyst. The inset is the corresponding structural optimization model.

Figure S6. The XRD enlarged pattern corresponds to Figure 3a.

Figure S7. HER polarization curves of the Mn-CoS₂ catalyst with different addition content of Mn precursor (MnCl₂·4H₂O) in 0.1 M KOH aqueous solution.

Figure S8. Nyquist plots of the CoS_2 and $Mn-CoS_2$. Obviously, the $Mn-CoS_2$ electrode exhibits an enhanced electron transfer rate and faster catalytic kinetics during the electrochemical process.

Figure S9. The CV curves (a) CoS_2 and (b) Mn-CoS₂ with different scan rates of 2, 4, 6, and 8 mV s⁻¹. (b)

The capacitive current densities as a function of scan rate for the catalysts.

Figure S10. HER polarization curves of the $Mn-CoS_2$ catalyst before and after 1000 CV cycles.

Figure S11. XRD pattern, SEM, and TEM images of the $Mn-CoS_2$ catalyst after the 54-h HER cycling stability measurement.

Figure S12. HzOR polarization curves of the Mn-CoS₂ in comparison with CoS₂ and commercial Pt/C (20 wt%) in 1 M $H_2SO_4 + 0.5$ M N_2H_4 aqueous solutions.

Figure S13. HzOR polarization curves of the Mn-CoS₂ catalyst before and after 1000 CV cycles.

Figure S14. The *i*-*t* curve of the Mn-CoS₂ electrode in the OHzS system for 24 h.

Catalysts	Electrolyte	η-10 (mV)	<i>Tafel slope</i> (mV dec ⁻¹)	Mass loading (mg cm ⁻²)	substrate	Ref.
Mn-CoS ₂	0.1 KOH	46	63.1	2.9	Ni foam	This work
RhIr MNs	1 М КОН	20	30.7	0.14	glassy carbon electrode	J. Mater. Chem. A 2021, 9, 18323
P-NiFeP/Ni	1 М КОН	17.9	63	-	Ni foam	Nanoscale Adv. 2021, 3, 2280
NiCo-MoNi ₄ HMNAs/NF	1 M KOH	68	67.5	-	Ni foam	Chem. Eng. J. 2021, 414, 128818
P-CoCO ₃ /CF	1 М КОН	46.1	71.16	-	Co foam	Sustain. Energy Fuels 2021, 5, 2257
Ni(Cu) CNPs	1 М КОН	41	51.1	-	Ni foam	J. Mater. Chem. A 2020, 8, 21084
CoP/Ni2P@NC	1 М КОН	143	76	-	glassy carbon electrode	Mater. Chem. Front. 2019, 3, 2428
CoP/TF	1 М КОН	118	62	-	Ti foil	Adv. Energy Mater. 2019, 9, 1803970
Ni ₂ P-CoP HNSAs/CC	1 М КОН	73(30 mA cm ⁻²)	120	-	carbon cloth	J. Mater. Chem. A 2016, 4, 16992

Table S1. Comparison of HER performances in alkaline media for Mn-CoS₂ with previously reported HER electrocatalysts.

Ni ₂ P NSs/CC		>200	142	-		
CoP NSs/CC		>200	177	-		
N: D/Ca D@NC	1 M KOH	251	81.64	0.100	glassy carbon	Int. J. Hydrogen
M ₂ r/Co ₂ r@nC	0.5 M H ₂ SO ₄	226	64.9	0.199	electrode	<i>Litergy 2019, 44,</i> 14908
Ni ₂ P@C	0.5 M H ₂ SO ₄	186	64	0.566	glassy carbon electrode	Appl. Surf. Sci. 2018, 457, 933
CoP@NPMG	1 М КОН	151	75	0.204	glassy carbon electrode	Nanoscale 2018, 10, 2603
CoP/NiCoP	1 M KOH	133	88	2	Ti foil	Adv. Energy Mater. 2019, 9, 1901213
Zn _{0.64} - CoP/Co ₂ P@CC	1 М КОН	95	82	5.74	carbon cloth	J. Solid State Chem. 2020, 285, 121231
Co ₂ P/CNT-900	1 M KOH	132	103	~0.75	glassy carbon electrode	Nano Energy 2016, 30, 303
SF-Co _x P		167	75			
CF-Co _x P	1 M KOH	148	73	0.5	glassy carbon electrode	Small 2018, 14, 1801284
C-Co _x P		P 121	62			

Ni ₂ P/NF	1 М КОН	116	68	-	Ni foam	Nano Res. 2020, 13, 2098
Ni ₂ P/Ni/NF	1 M KOH	98	-	-	Ni foam	ACS Catal. 2016, 6, 2, 714
NiFeLDH NiCoP/NF	1 M KOH	120	48.6	2	Ni foam	Adv. Funct. Mater. 2018, 28, 1706847
Ni ₂ P	1 M KOH	148	61	-	Ni foam	Int. J. Hydrogen Energy 2020, 45, 2546
Ni ₅ P ₄	1 M KOH	150	53	3.475	Ni foil	Angew. Chem. Int. Ed. 2015, 54, 12361
Ni ₂ P-NiSe ₂ /CC	1 М КОН	66	72.6	9.2	carbon cloth	Appl. Catal. B 2020, 262, 118245
V-Ni ₂ P NSAs/CC	1 M KOH	85	95	-	carbon cloth	Nanoscale 2019, 11, 4198
Ni ₂ P@NPCNFs	1 M KOH	104	79.7	-	carbon cloth	Angew. Chem. Int. Ed. 2018, 57, 1963
Co-P/NC	1 М КОН	154	51	0.283	glassy carbon electrode	Chem. Mater. 2015, 27, 7636
Ni(OH) ₂ /NiSe ₂ /C C	1 М КОН	82	60	3.45	carbon cloth	Int. J. Hydrogen Energy 2019, 44, 4832
CoP/rGO	1 M KOH	150	38	0.28	glassy carbon electrode	Chem. Sci. 2016, 7, 1690

p-CoSe ₂ /CC	1 М КОН	138	83	2.3	carbon cloth	ACS Sustainable Chem. Eng. 2018, 6, 15374
NiSe-Ni _{0.85} Se/CP	1 M KOH	101	102	1.68	carbon fiber paper	Small 2018, 14, 1800763
Ni ₃ S ₂ /NF	1 M KOH	131	96	1.4	Ni foam	Nanoscale 2018, 10, 17347
NiCo ₂ O ₄ /NF	1 M KOH	164	88	-	Ni foam	Adv. Funct. Mater. 2016, 26, 3515

Catalysts	Electrolyte	Potential (mV vs RHE)	<i>Mass loading</i> (mg cm ⁻²)	substrate	Ref.
Mn-CoS ₂	0.5 M N ₂ H ₄ + 1 M KOH	$E_{10} = 77$	2.9	Ni foam	This work
3D NiCoSe ₂ /NF	0.1 M N ₂ H ₄ + 0.5 M KOH	$E_{\rm onset}$ = -0.7 V vs SCE	-	Ni foam	ACS Sustainable Chem. Eng. 2018, 6, 7735
NSC	0.05 M N ₂ H ₄ + 0.1 M PBS	$E_{\rm onset} = 380$	-	glassy carbon electrode	Appl. Catal. B: Environ. 2018, 225, 30
Co/LaCoOx@N- C-1	0.1 M N ₂ H ₄ + 1 M KOH	$E_{\rm onset} = -170$	0.285	glassy carbon electrode	ACS Appl. Mater. Interfaces 2020, 12, 24701
Co ₃ O ₄ /Co	0.3 M N ₂ H ₄ +1 M KOH	$E_{50} = -110$ $E_{200} = -32$ $E_{300} = -14$	6.5	glassy carbon electrode	ACS Sustainable Chem. Eng. 2020, 8, 7973
FeWO ₄ -WO ₃ /NF	0.5 M N ₂ H ₄ +1 M KOH	$E_{10} = -34$ $E_{1000} = 164$	-	Ni foam	Nano Res. 2021, 14, 4356
MWCNT- NH ₂ @PQQ	0.01 M N ₂ H ₄ + 0.1 M Tris-HCl	$E_{0.154} = 0.36 \text{ V vs}$ Ag/AgCl	-	glassy carbon electrode	ACS Appl. Nano Mater. 2018, 1, 2069
FeN ₄ /HPCM	0.1 M N ₂ H ₄ + 1 M KOH	$E_{\rm onset} = 200$	0.6	filter paper	Small 2020, 16, 2002203
NC@Co/NC	0.01 M N ₂ H ₄ + 1 M KOH	$E_{\rm onset} = 470$	0.25	glassy carbon electrode	ACS Nano 2021, 15, 10286

Table S2. Comparison of HzOR performances for Mn-CoS₂ with previously reported HzOR electrocatalysts.

	0.05 M N ₂ H ₄ + 1 M KOH	$E_{\rm onset} = 410$			
	0.1 M N ₂ H ₄ +1 M KOH	$E_{\rm onset} = 370$			
β-Ni(OH)2/SSM	0.5 M N ₂ H ₄ + 1 M KOH	$E_{50} = 1340$	0.8	Stainless steel mesh	ChemCatChem 2021, 13, 1165
RhIr MNs	0.5 M N ₂ H ₄ + 1 M	$E_{10} = -12$ $E_{100} = 117$	0.14	glassy carbon	J. Mater. Chem. A
Pt/C	КОН	$E_{10} = 123$ $E_{100} = 300$	0.14	electrode	2021, 9, 18323
CoP/Co-20	0.5 M N ₂ H ₄ + 1 M KOH	$E_{10} = -69$ $E_{100} = 177$	0.275	glassy carbon electrode	J. Phys. Chem. Lett. 2021, 12, 4849
P-NiFeP/Ni	0.1 M N ₂ H ₄ + 1 M KOH	$E_{10} = 77$	-	Ni foam	Nanoscale Adv. 2021, 3, 2280
NiCo-MoNi ₄ HMNAs/NF	0.1 M N ₂ H ₄ + 1 M KOH	$E_{10} = -30$	-	Ni foam	Chem. Eng. J. 2021, 414, 128818
NiCoP/NF	0.5 M N ₂ H ₄ + 1 M NaOH	$E_{1511} = 300$	-	Ni foam	Electrochim. Acta 2021, 387, 138492
Ni–Co/NF	0.5 M N ₂ H ₄ + 1 M NaOH	$E_{onset} = -160$ $E_{1213} = 300$	-	Ni foam	ACS Sustainable Chem. Eng. 2020, 8, 16583
A-Ru-KB	0.1 M N ₂ H ₄ + 1 M	$E_{\rm onset} = -83$	3	glassy carbon	ACS Appl. Mater.
Pt/C	КОН	$E_{\text{onset}} = 61$		electrode	8488

Ni@Pd-Ni	0.02 M N ₂ H ₄ + 1 M KOH	$E_{\text{onset}} = -990 \text{ vs Ag/AgCl}$	-	Ni nanowire arrays	ChemElectroChem, 2019, 6, 5581
MoC _x - NC-900	0.02 M N ₂ H ₄ + 0.1 M KOH	$E_{\rm onset} = 650$	1	glassy carbon electrode	Electrochim. Acta 2021, 384, 138417
Cas-Cu-R	0.05 M N ₂ H ₄ + 0.1 M PBS	$E_{\rm onset} = 350$	0.1	glassy carbon electrode	J. Electroanal. Chem. 2021, 882, 114997
PNC ₃	0.1 M N ₂ H ₄ + 0.01 M PBS	$E_{\rm onset} = 420$	-	glassy carbon electrode	ACS Appl. Energy Mater. 2019, 2, 2313
Ni _{0.85} Se/rGO	0.1 M N ₂ H ₄ + 1 M KOH	$E_{\text{onset}} = 40$	-	Ni foam	J. Electrochem. Soc. 2021 168 104510
P-CoCO ₃ /CF	0.3 M N ₂ H ₄ + 1 M KOH	$E_{100} = -42.3$	-	Co foam	Sustain. Energy Fuels, 2021, 5, 2257
Ni(Cu) CNPs	0.5 M N ₂ H ₄ + 1 M KOH	$E_{10} = -18$	-	Ni foam	J. Mater. Chem. A 2020, 8, 21084
CoP/TiM	0.1 M N ₂ H ₄ + 1 M KOH	$E_{100} = -6$	0.7	Ti mesh	ChemElectroChem 2017, 4, 481
S-LDH-3	0.02 M N ₂ H ₄ + 0.1 M KOH	$E_{\rm onset} = 210$	-	Ni foam	J. Mater. Chem. A 2019, 7, 24437
NiS ₂ /TiM	0.5 M N ₂ H ₄ + 1 M KOH	$E_{300} = 218$	1.2	Ti mesh	Mater. Today Energy 2017, 3, 9
Ni@Ni ₂ P NTA/NF	0.5 M N ₂ H ₄ + 1 M KOH	$E_{\text{onset}} = -90$ $E_{1120} = 300$	-	Ni foam	ACS Sustainable Chem. Eng. 2021, 9, 4564

Catalysts	Electrolyte	<i>Potential</i> (mV vs RHE)	Mass loading (mg cm ⁻²)	substrate	Ref.
Mn-CoS ₂	0.5 M N ₂ H ₄ + 1 M KOH	$E_{200} = 447$	2.9	Ni foam	This work
Ni NCNA	0.3 M N ₂ H ₄ + 1 M KOH	$E_{10} = 23$	2.8	Ni foam	Small 2021, 17, 2008148
N-Ni ₁ Co ₃ Mn _{0.4} O/NF	0.5 M N ₂ H ₄ + 1 M KOH	$E_{100} = 272$	5.92	Ni foam	Int. J. Hydrog. Energy 2022, 47, 5766-5778
Ni ₃ N-Co ₃ N	0.1 M N ₂ H ₄ + 1 M KOH	$E_{10} = 71$	-	Ni foam	Angew. Chem. Int. Ed. 2021, 60, 5984
CoP/Co	0.5 M N ₂ H ₄ + 1 M KOH	$E_{10} = 260$	-	glassy carbon electrode	J. Phys. Chem. Lett. 2021, 12, 4849
Mn-SA/BNC	0.5 M N ₂ H ₄ + 1 M KOH	$E_{10} = 410$	1	glassy carbon electrode	Nanoscale, 2021, 13, 4767
Rh-NS-HCS	0.5 M N ₂ H ₄ + 1 M KOH	$E_{10} = 110$	0.5	carbon paper	Mater. Chem. Front., 2021, 5, 3125
NiCo/MoNi ₄	0.1 M N ₂ H ₄ + 1 M KOH	$E_{250} = 630$	-	Ni foam	Chem. Eng. J. 2021, 414, 128818

Table S3. Comparison of OHzS performances in alkaline media for Mn-CoS₂ with previously reported OHzS electrocatalysts.