Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Phosphorous Doped Two-dimensional CoFe₂O₄ Nanobelt Decorated with Ru Nanoclusters and Co-Fe Hydroxide as Efficient Electrocatalysts Toward Hyrogen Generation

Wenli Yu¹, Zhi Chen², Weiping Xiao³, Yongming Chai¹, Bin Dong^{*, 1}, Zexing Wu^{*, 2, 4}, Lei Wang²

1. State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao, 266580, P. R. China E-mail: dongbin@upc.edu.cn 2. Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Ministry of Education, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China E-mail: splswzx@qust.edu.cn,

3. College of Science, Nanjing Forestry University, Nanjing, 210037, PR China

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),
 College of Chemistry, Nankai University, Tianjin 300071, China

Figure S1 SEM images of iron foam with different magnification.

Figure S2 SEM images of the product after the hydrothermal reaction with different magnification.

Figure S3 SEM image of the product after the hydrothermal reaction.

Figure S4 SEM image of Ru/P-CoFe₂O₄/IF.

Figure S5 Raman spectra of $CoFeO_xH_y$ -Ru/P-CoFe₂O₄/IF (red line) and Ru/P-CoFe₂O₄/IF (black line).

Figure S6 HER polarization curves of as prepared catalyst tested every 15 minutes.

Figure S7 SEM image of pre-catalyst after soaking in water.

2 4 6 8 10 12 14 16 Figure S8 the EDS mappings $CoFeO_xH_y$ -Ru/P-CoFe₂O₄/IF.

Figure S9 N₂ sorption isotherms and pore size distribution curve of CoFeO_xH_y-Ru/P-CoFe₂O₄/IF.

Figure S10 XPS survey spectrum (a) high-resolution of Co 2p (b), Fe 2p (c), Ru 3p (d), O 1s (e) and P 2p (f) of the designed Ru/P-CoFe₂O₄/IF (red line) and CoFeO_xH_y-Ru/P-CoFe₂O₄/IF (black line).

Figure S11 Nyquist plots of obtained catalysts in 1M KOH.

Figure S12 Electrochemical measurements: (a) HER polarization curves, (b) Tafel slopes, (c) Nyquist plots, (d-f) linear fitting of scan rates with capacitive current densities (inset is CV curves under different scan rate) of obtained catalysts in 1M KOH.

Figure S13 XPS survey spectrum (a) and high-resolution of P 2p (b) of the designed $CoFeO_xH_y$ -Ru/P-CoFe₂O₄/IF after long-time stability test.

Figure S14 (a, b) SEM image of $RuO_2/CoFe_2O_4$ with different magnification. (c) TEM image of $RuO_2/CoFe_2O_4$.

Figure S15 XPS survey spectrum high-resolution of Co 2p (a), Fe 2p (b), Ru 3p (c) and O 1s (d) of the designed RuO₂/CoFe₂O₄.

Figure 16 XPS survey spectrum of the designed RuO₂/CoFe₂O₄.

Figure 17 LSV curve of the designed RuO₂/CoFe₂O₄.

Table S1 Element content of Fe, Co Ru and P in 1M KOH after the hydrolysis determined using ICP.

State of solution	Element	the element content of the solution (mg/L)	Diluted multiples	Sample element content (mg/L)
initial	Fe	< 0.02	10	< 0.2
final	Fe	< 0.02	10	< 0.2
initial	Co	< 0.02	10	< 0.2
final	Co	0.03	10	0.31
initial	Ru	< 0.02	10	< 0.2
final	Ru	< 0.02	10	< 0.2
initial	Р	< 0.02	10	< 0.2
final	Р	7.59	10	75.94

Catalysts	Electrolyte	Overpotential (mV) 10 mA cm ⁻²	Tafel slope (mV dec-1)	Reference
CoFeO _x H _y -Ru/P- CoFe ₂ O ₄ /IF	1 M KOH	22@20 mA cm ⁻²	43.2	This work
RuO ₂ @C	1 M KOH	20	46	Nano Energy 2019, 55, 49- 58
RuCoP	1 M KOH	23	37	<i>Energy Environ.</i> <i>Sci.</i> 2018, 11, 1819-1827
Ru2-GC	1 M KOH	25	65	ACS Catal. 2018, 8, 11094-11102
Ru@SC-CDs	1 M KOH	29	57	Nano Energy 2019, 65, 104023
Ru@CN	1 M KOH	32	53	<i>Energy Environ. Sci.</i> 2018, 11, 800-806
Ru/CP	1 M KOH	35	50	Nanoscale 2017, 9, 16616- 16621
Ru-MoS ₂ /CNT	1 M KOH	50	62	Adv. Sci. 2019, 6, 1900090
Ru-ZIF-900	1 M KOH	51.6	78.4	J. Mater. Chem. A 2020, 8, 3203-3210
RuP ₂ @NPC	1 M KOH	52	69	Angew. Chem., Int. Ed. 2017, 56, 11559-11564
Ru _{0.33} Se @ TNA	1 M KOH	57	50	Small 2018, 14, 1802132
Cu _{2-x} S@Ru	1 M KOH	82	48	Small 2017, 13, 1700052

 Table S2 Comparison of the electrocatalytic performances for HER in 1M KOH.

Table S3 Comparison of the electrocatalytic performances for HER in alkaline mdium.

Catalysts	Electrolyte	Overpotential (mV) at 100 mA cm ⁻²	Reference
CoFeO _x H _y -Ru/P- CoFe ₂ O ₄ /IF	1 M KOH	54.4	This work
RuOx-Ni(OH) ₂ /NF	1 M KOH	61.7	<i>Electrochimica Acta</i> 2020, 356, 136732
RuP(S-RP/C)	1 M KOH	71	<i>Adv. Mater.</i> 2018, 30, 1800047
Ru-HPC	1 M KOH	~80	Nano Energy 2019, 58, 1-10
Pt	1 M KOH	87	Small Methods, 2020, 4, 1900796

Fe _{0.5} Co _{0.5} P	1 M KOH	98	Energy Environ. Sci., 2018,11, 2246-2252
Ru NP/C	1 M KOH	~100	Adv. Energy Mater. 2018, 8, 1801698
Pt _{SA} -Co(OH) ₂ @Ag NWs	1 M KOH	104	Energy Environ. Sci., 2020,13, 3082-3092
Ni-MoO2-400 NWs- CC	1 M KOH	105	J Mater Chem A 2017, 5, 24453-24461
Co P/CNT	1 M KOH	109	Nat. Commun. 2016, 7, 10771
Pt _{SA} -NT-NF	1 M KOH	110	Angew. Chem. Int. Ed., 2017, 56, 13694-13698
Pt/Ni(HCO ₃) ₂	1 M KOH	120	Angew. Chem. Int. Ed. 2019, 58, 5432
Pt-Co(OH) ₂ /CC	1 M KOH	122	ACS Catal., 2017, 7, 7131- 7135
Pt SNs -MoO ₂ NRs	1 M KOH	135	Chem. Eng. J, 2022, 427, 131309
V-CoP/CC	1 M KOH	138	Chem. Sci. 2018, 9, 1970
CoP/Ni ₅ P ₄ /CoP	1 M KOH	140	<i>Energy Environ. Sci.</i> 2018, 11, 2246
Ni-BDT	1 M KOH	150	Chem 2017, 3, 122-133
Ni ₃ N/Pt	1 M KOH	170	Adv. Energy Mater. 2017, 7, 1601390
Ru-Fe ₃ O ₄ @FeNi- LDH-NF	1 M KOH	212	Dalton Trans., 2021, 50, 13951–13960
RuCo@NC	0.1 M KOH	218	Nat. Commun. 2017, 8, 14969

Table S4 Comparison of the electrocatalytic performances for HER in neutral.

Catalysts	Electrolyte	Overpotential (mV) at 10 mA cm ⁻²	Reference
CoFeO _x H _y -Ru/P- CoFe ₂ O ₄ /IF	1 M PBS	30.1@ 50 mA cm ⁻²	This work
Rh ₂ P	1 M PBS	38	<i>Adv. Energy Mater.</i> 2018, 8, 1703489
Ru, Cr ₂ O ₃ /NG	1 M PBS	53	<i>RSC Adv.</i> , 2021,11, 6107- 6113
RuP ₂ @NPC	1 M PBS	57	Angew. Chem. Int. Ed. 2017, 56,11559
CC@WO ₃ /Ru-450	1 M PBS	64	Chem. Eng. J. 2022, 430, 132953

Ru/OMSNNC	1 M PBS	70	Adv. Mater. 2021, 2006965
Ru_{SA} -N- $Ti_3C_2T_x$	1 M PBS	81	J. Mater. Chem. A 2020, 8, 24710–24717
Ru/MEOH/THF	0.1 M PBS	83	Chem. Commun., 2017, 53, 11713
Rh ₂ P/NPC	0.2 M PBS	119	J. Mater. Chem. A 2020, 8, 25768–25779

Table S5. Comparison of the electrocatalytic performances overall water splitting

Catalysts	Electrolyte	Cell Voltage (V) at 10 mA cm ⁻²	Reference
CoFeO _x H _y -Ru/P- CoFe ₂ O ₄ /IF	1 M KOH	1.49	This work
Rh SAC-CuO NAs/CF	1 M KOH	1.51	Nano Lett. 2020, 20, 5482- 5489
Ru-NiCoP/NF	1 M KOH	1.515	Appl. Catal. B: Environ. 2020, 279
Ru/NiFe LDH-F/NF	1 M KOH	1.53	Nanoscale 2020, 12, 9669- 9679
Pt-CoS ₂ /CC	1 M KOH	1.55	Appl. Catal. B: Environ. 2019, 249, 91-97
RuO ₂ /N–C	1 M KOH	1.55	J. Mater. Chem. A 2018, 6, 1376-1381
IrTe ₂	1 M KOH	1.56	<i>Adv. Funct. Mater.</i> 2020, 30, 2004375
Ru ₁ Ni ₁ -NCNFs	1 M KOH	1.564	Adv. Sci. 2020, 7, 1901833
Ru ₁ Co ₂ NPs	1 M KOH	1.59	ACS Appl. Energy Mater. 2020, 3, 1869-1874