Electronic Supplementary Information (ESI) for Inorganic Chemistry Frontiers.

A porphyrin-based metal-organic framework with highly efficient adsorption and photocatalytic degradation of organic dyes

Xiong-Hai Chen,^a Yun-Shi Zhang,^a Wen-Bin Li,^a Xiu-Wen Guan,^a Jia-Wen Ye,^a Ling Chen,^a Hai-Ping

Wang,^a Jie Bai,^b Zong-Wen Mo, *a and Xiao-Ming Chen^{a,c}

^a School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529000, PR

China.

^b Analysis and Test Center, Guangdong University of Technology, Guangzhou 510275, China.

^c MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

*Email: <u>wyuchemmzw@126.com</u>

Calculation of capacity.

The adsorption capacities at a given time and equilibrium are calculated as equation: (1)

$$Q_{\rm e} = V \cdot (C_0 - C_{\rm e}) \cdot M/m$$
 (1)

where V is the volume of the dye solution, C_0 , and C_e represent the concentration of dye solution at the initial and equilibrium time, respectively. *m* is the adsorbent mass of **1**.

Photocatalytic degradation of dyes of kinetics.

Dynamic analysis of the catalysis of dyes shows that the degradation of the dye is a first-order reaction, and the first-order model is expressed by equation (2, Langmuir–Hinshelwood model). The kinetic constant (k) reflects the speed of photodegradation.

 $-\ln(C/C_0) = k \cdot t$ (2) The k value is the kinetic constant, and the slope of the linear plot.

Calculation of degradation efficiency.

The degradation efficiency of dyes is calculated using the following equation (3)

Degradation efficiency (%) = $(1 - C/C_0) \cdot 100\%$ (3)

C and C_0 represent the apparent and initial concentrations of dyes, respectively.

Adsorption kinetics study.

The pseudo-second/first-order model was used to fit the kinetic results. The related equation can be expressed as follows:

$$t / Q_{\rm t} = 1 / (k_1 Q_{\rm e}^2) + t / Q_{\rm e}$$

 $\ln(Q_{\rm e} - Q_{\rm t}) = \ln Q_{\rm e} - k_2 t$

 k_1 (g·mg⁻¹ min⁻¹) is the rate constant of adsorption, which was calculated from the intercept/slope of t/Q_t vs t plot and k_2 (min⁻¹) was obtained from the slope of ln($Q_e - Q_t$) vs t plot.

Fig. S1. Perspective view of the asymmetric unit of **1** (symmetry codes: A = 2-*x*, 2-*y*, 1-*z*; B = 3-*x*, 2-*y*, 1-*z*; C = 5/2+x, 5/2-y, 1/2+z; D = -1/2x, 5/2-y, 1/2+z; E = 1/2+x, 5/2-y, 1/2+z).

Fig. S2. The coordination mode of TCPP⁴⁻ ligand in 1.

Fig. S3. The thermogravimetry curves of 1 and MeOH-exchanged 1.

Fig. S4. CO₂ sorption isotherms for 1 at 195 K.

Fig. S5. (a) BET and (b) Langmuir fittings of the CO₂ adsorption isotherm for 1.

Fig. S6. Structures of the dye molecules.

Fig. S7. UV-vis absorbance of (a) RhB⁺ (0.25 mmol L⁻¹), (b) BO21⁺ (0.1 mmol L⁻¹), and (c) COG^- (0.1 mmol L⁻¹). Two-component dye adsorption of (d) SY2⁰ and FG⁺, (e) MO⁻ and FG⁺ and (f) COG⁻ and FG⁺ (0.1 mmol L⁻¹ and 0.1 mmol L⁻¹). Inset: photographs showing visual colour changes of the dye solution.

Fig. S8. Two-component dye adsorption of (a) RhB⁺ and BO21⁺, (b) RhB⁺ and MB⁺, (c) FG⁺ and BO21⁺, (d) FG⁺ and MB⁺ and (e) BO21⁺ and MB⁺ (0.1 mmol L^{-1} and 0.1 mmol L^{-1}).

Fig. S9. UV-vis absorption spectra for dye adsorption with high concentration of (a) RhB⁺ (1 mmol L^{-1}) and (b) FG⁺ (0.6 mmol L^{-1}). Inset: photographs showing visual colour changes of the dye solution before and after adsorption experiment.

Fig. S10. PXRD patterns of 1 after dye exchange experiments.

Figure S11. Plot of the pseudo-first-order kinetic model for (a) RhB^+ , (b) FG^+ , (c) $BO21^+$ and (d) MB^+ .

Figure S12. Plot of the pseudo-second-order kinetic model for (a) RhB^+ , (b) FG^+ , (c) $BO21^+$ and (d) MB^+ .

Fig. S13. UV-vis absorption spectra of (a) BO21⁺, (b) MO⁻ and (c) COG⁻ recorded at various times during the photocatalytic process, photocatalytic oxidation performances of 1 for (d) BO21⁺, (e) SY2⁰, MO⁻ and COG⁻. Plots of $\ln(C_0/C)$ with respect to time for (f) MB⁺, (g) FG⁺, and (h) BO21⁺, providing apparent reaction rate constants (*k*).

Fig. S14. PXRD patterns of 1 after photocatalytic experiments.

Fig. S15. Infrared spectra of **1** before and after photocatalytic experiments of five consecutive photocatalytic recycles for the degradation of MB⁺.

Fig. S16. (a) UV–vis diffuse reflectance spectrum (DRS) spectrum of **1**, (b) Tauc plot of the UV-vis DRS spectrum of **1** and (c) VB XPS diagram of **1**.

Fig. S17. Time evolution of the absorption spectra of DPBF under visible light irradiation.

Fig. S18. DMPO/ \cdot O₂⁻ spin-trapping ESR spectra of 1 in methanol before and after irradiation.

Fig. S19. PXRD patterns of 1 under different environments.

Complex	1		
Formula	$C_{60}H_{57}N_7O_{13}Sr_2$		
Formula weight	1259.36		
Temperature (K)	298(2)		
Crystal system	monoclinic		
Space group	$P2_{1}/n$		
a/Å	7.67080(4)		
b/Å	26.58541(16)		
c/Å	29.55061(17)		
$\beta^{ m o}$	96.5378(5)		
$V/Å^3$	5987.11(6)		
Ζ	4		
$D_{\rm c}/{\rm g~cm^{-3}}$	1.397		
reflns coll.	11011		
unique reflns	12013		
R _{int}	0.0423		
$R_1 [I > 2\sigma(I)]^a$	0.0386		
$wR_2[I > 2\sigma(I)]^b$	0.1052		
R_1 (all data)	0.0414		
wR_2 (all data)	0.1073		
GOF	1.028		

 Table S1. Crystallographic data and structural refinement detail of 1.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|.$

^b $wR_2 = \{\Sigma w[(F_o)^2 - (F_c)^2]^2 / \Sigma w[(F_o)^2]^2\}^{1/2}$

Dyes	MOFs	$Q_{\rm e} ({\rm mg/g})$	Ref	
$ m RhB^+$	LIFM-WZ-3	141.5	1	
	LIFM-WZ-4	61.8	2	
	UPC-102-Zr	195	3	
	NH ₂ -MOF-199	156	4	
	JUL-liu 397	16	5	
	MIL-100(Fe)	194.17	6	
	SCNU-Z2	751.8	7	
	CP1	24.36	8	
	MOF-808(Zr)	166.7	9	
	CPM-97-Fe	306	10	
	1	472.8	This work	

Table S2. Comparison of RhB^+ adsorption capacities in MOFs.

Table S3. Comparison of the photocatalytic degradation performances of MOFs on methylene blue (MB^+).

MOFs	Dye	Concentration and quantity (mg L ⁻¹)	Irradiation	Degradation Time (min)	Degradation Efficiency (%)	Ref
[Co ₂ (tkcomm)(tkiymm)]	MB^+	3.51	Vis (500 W)	300	50	11
MIL-53(Fe)	MB^+	140	Vis (500 W)	40	20	12
Fe ₃ O ₄ @MIL-100(Fe)	MB^+	40	Vis (500 W)	20	20	13
$[\operatorname{Co}_2(1,4\text{-bdc})(\operatorname{ncp})_2]$	MB^+	35.1	UV (375 W)	300	63	14
MIL-88A	MB^+	32	Vis (300 W)	20	100	15
$g-C_3N_4/NH_2-MIL-88B(Fe)$	MB^+	30	Vis (500 W)	120	30	16
$Cu_4I_4[Cu(5-eatz)_2]_2$	MB ⁺	55	Vis (300 W)	300	50	17
Cu(I)(ptz)	MB ⁺ (H ₂ O ₂)	18.7	Vis (500 W)	24	98	18
[Co(tib) ₂]·SO ₄	MB^+	10	Vis (300 W)	25	100	19
1	MB ⁺	20	Vis (300 W)	20	99	This work

References

- 1. Z. Wang, J. H. Zhang, J. J. Jiang, H. P. Wang, Z. W. Wei, X. J. Zhu, M. Pan and C. Y. Su, A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal, *J. Mater. Chem. A*, 2018, **6**, 17698-17705.
- 2. Z. Wang, C. Y. Zhu, H. S. Zhao, S. Y. Yin, S. J. Wang, J. H. Zhang, J. J. Jiang, M. Pan and C. Y. Su, Record high cationic dye separation performance for water sanitation using a neutral coordination framework, *J. Mater. Chem. A*, 2019, **7**, 4751-4758.
- 3. W. D. Fan, X. Wang, B. Xu, Y. T. Wang, D. D. Liu, M. Zhang, Y. Z. Shang, F. N. Dai, L. L. Zhang and D. F. Sun, Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance, *J. Mater. Chem. A*, 2018, **6**, 24486-24495.
- 4. R. Issa, F. A. Ibrahim, M. Al-Ghoul and M. Hmadeh, Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process, *Nano Research*, 2021, **14**, 423-431.
- Z. H. Xu, L. L. Han, G. L. Zhuang, J. Bai and D. Sun, In Situ Construction of Three Anion-Dependent Cu(I) Coordination Networks as Promising Heterogeneous Catalysts for Azide-Alkyne "Click" Reactions, *Inorg. Chem.*, 2015, 54, 4737-4743.
- 6. J. Y. Wu, Y. Y. Gao, S. Wei, P. Chen, D. D. Gu, B. Fu and M. H. Chen, Plasma modification of Fe-MOF for efficient organic pollutants removal, *J. Solid State Chem.*, 2021, **302**, 9.
- S. Q. Deng, Y. L. Miao, Y. L. Tan, H. N. Fang, Y. T. Li, X. J. Mo, S. L. Cai, J. Fan, W. G. Zhang and S. R. Zheng, An Anionic Nanotubular Metal-Organic Framework for High-Capacity Dye Adsorption and Dye Degradation in Darkness, *Inorg. Chem.*, 2019, 58, 13979-13987.
- 8. Y. Rachuri, S. Subhagan, B. Parmar, K. K. Bisht and E. Suresh, Selective and reversible adsorption of cationic dyes by mixed ligand Zn(II) coordination polymers synthesized by reactant ratio modulation, *Dalton Trans.*, 2018, **47**, 898-908.
- 9. S. F. Jia, S. F. Song and X. D. Zhao, Selective adsorption and separation of dyes from aqueous solution by a zirconium-based porous framework material, *Appl. Organomet. Chem.*, 2021, **35**, 10.
- 10. S. H. Tian, S. Xu, J. T. Liu, C. He, Y. Xiong and P. Y. Feng, Highly efficient removal of both cationic and anionic dyes from wastewater with a water-stable and eco-friendly Fe-MOF via host-guest encapsulation, *J. Clean Prod.*, 2019, **239**, 10.
- 11. J. Guo, J. Yang, Y. Y. Liu and J. F. Ma, Two novel 3D metal-organic frameworks based on two tetrahedral ligands: syntheses, structures, photoluminescence and photocatalytic properties, *Crystengcomm*, 2012, **14**, 6609-6617.
- J. J. Du, Y. P. Yuan, J. X. Sun, F. M. Peng, X. Jiang, L. G. Qiu, A. J. Xie, Y. H. Shen and J. F. Zhu, New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye, *J. Hazard. Mater.*, 2011, **190**, 945-951.
- 13. C. F. Zhang, L. G. Qiu, F. Ke, Y. J. Zhu, Y. P. Yuan, G. S. Xu and X. Jiang, A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe₃O₄@MIL-100(Fe) for the decolorization of methylene blue dye, *J. Mater. Chem. A*, 2013, 1, 14329-14334.

- H. Y. Sun, C. B. Liu, Y. Cong, M. H. Yu, H. Y. Bai and G. B. Che, New photocatalyst for the degradation of organic dyes based on [Co₂(1,4-BDC)(NCP)₂]_n·4nH₂O, *Inorg. Chem. Commun.*, 2013, 35, 130-134.
- W. T. Xu, L. Ma, F. Ke, F. M. Peng, G. S. Xu, Y. H. Shen, J. F. Zhu, L. G. Qiu and Y. P. Yuan, Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye, *Dalton Trans.*, 2014, 43, 3792-3798.
- 16. X. Y. Li, Y. H. Pi, L. Q. Wu, Q. B. Xia, J. L. Wu, Z. Li and J. Xiao, Facilitation of the visible lightinduced Fenton-like excitation of H₂O₂ via heterojunction of g-C₃N₄/NH₂-Iron terephthalate metalorganic framework for MB degradation, *Appl. Catal. B-Environ.*, 2017, **202**, 653-663.
- 17. J. Liu, Y. H. Tang, F. Wang and J. Zhang, Syntheses of copper-iodine cluster-based frameworks for photocatalytic degradation of methylene blue, *Crystengcomm*, 2018, **20**, 1232-1236.
- 18. T. Wen, D. X. Zhang and J. Zhang, Two-Dimensional Copper(I) Coordination Polymer Materials as Photocatalysts for the Degradation of Organic Dyes, *Inorg. Chem.*, 2013, **52**, 12-14.
- Q. G. Shang, T. Y. Zeng, K. Gao, N. N. Liu, Q. R. Cheng, G. Y. Liao, Z. Q. Pan and H. Zhou, A novel nitrogen heterocyclic ligand-based MOF: synthesis, characterization and photocatalytic properties, *New J. Chem.*, 2019, 43, 16595-16603.