Supporting Information (SI)

Ultrafast visible-light photochromic properties of

naphthalenediimide-based coordination polymers for the visual

detecting/filtering blue light

Pengfei Hao,* Bohong Gao, Gaopeng Li, Junju Shen and Yunlong Fu*

Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education,

School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.

E-mail address: haopengfei_2015@126.com; yunlongfu@sxnu.edu.cn.

Content

1. Figures	3
Fig. S1 Thermo-gravimetric (TG) and Differential scanning calorimetry (DSC) curves of 1 and 2	3
Fig. S2 The UV-vis absorption spectra of 3-/4-PMNDI upon alternating UV light illumination and dark/	neat
treatment	3
Fig. S3 Kubelka-Munk transformed reflectivity vs energy of complexes 1, 2, 3-PMNDI and 4-PMNDI	3
Fig. S4 Abs(t) vs. t plots for 1-2. The lines show the fits of the plots according to rate law $Abs(t) = Abs(t)$	4 ₀ +
$A_1(\exp(-k_1t) + \exp(-k_2t))$ (<i>inset</i> : coloration rate constant values of 1-2) ($\lambda_{max} = 526$ nm for 1 and $\lambda_{max} = 526$	617
nm for 2)	4
Fig. S5 FT-IR spectra of 1 and 2 as-synthesized samples and after irradiation samples	4
Fig. S6 PXRD patterns of 1 and 2 simulated from the X-ray single-crystal structures, as-synthesized sam	ples
and after irradiation samples.	4
Fig. S7 The UV-vis absorption spectra of 1, 1P and 1P-heating (a) and 2, 2P and 2P-heating (b)	5
Fig. S8 The switching cycles of coloration-decoloration processes of 1 (527nm) and 2 (618nm) u	pon
alternating Xe light illumination and thermal treatment.	5
Fig. S9 The photochromic behaviors and UV-vis absorption spectra of 1 upon UV light (335-395	nm)

	illumination
	Fig. S10 The photochromic behaviors and UV-vis absorption spectra of 2 upon UV light (335-395 nm)
	illumination6
	Fig. S11 The EPR spectra of 1, 1P-UV and 1P-UV-heating (a), and 2, 2P-UV and 2P-UV-heating (b)7
	Fig. S12 Cd 3d (a), C 1s (b), N 1s (c) and O 1s (d) XPS core-level spectra of 1 and 1P7
	Fig. S13 Cd 3d (a), C 1s (b), N 1s (c) and O 1s (d) XPS core-level spectra of 2 and 2P8
	Fig. S14 The photochromic behaviors of 3-/4-PMNDI (a), and the UV-vis absorption spectra of 3-PMNDI (b)
	and 4-PMNDI (c) under excitation of different visible-light wavelengths8
2.	. Tables
	Table S1 Crystallographic data and refinement parameters of compounds 1 and 2. 9
	Table S2 Selected bond lengths (Å) and angles (°) of 1 and 2. 10
	Table S3 Hydrogen bonds of compound 1 (Å and °)14

Fig. S1 Thermo-gravimetric (TG) and Differential scanning calorimetry (DSC) curves of 1 and 2.

Fig. S2 The UV-vis absorption spectra of 3-/4-PMNDI upon alternating UV light illumination and dark/heat

treatment.

Fig. S3 Kubelka-Munk transformed reflectivity vs energy of complexes 1, 2, 3-PMNDI and 4-PMNDI.

Fig. S4 Abs(*t*) *vs. t* plots for **1-2**. The lines show the fits of the plots according to rate law Abs(*t*) = $A_0 + A_1(\exp(-k_1t) + \exp(-k_2t))$ (*inset*: coloration rate constant values of **1-2**) ($\lambda_{max} = 526$ nm for **1** and $\lambda_{max} = 617$ nm for **2**).

Fig. S5 FT-IR spectra of 1 and 2 as-synthesized samples and after irradiation samples.

Fig. S6 PXRD patterns of 1 and 2 simulated from the X-ray single-crystal structures, as-synthesized samples and after irradiation samples.

Fig. S7 The UV-vis absorption spectra of 1, 1P and 1P-heating (a) and 2, 2P and 2P-heating (b).

Fig. S8 The switching cycles of coloration-decoloration processes of 1 (527nm) and 2 (618nm) upon alternating Xe light illumination and thermal treatment.

Fig. S9 The photochromic behaviors and UV-vis absorption spectra of 1 upon UV light (335-395 nm) illumination.

Fig. S10 The photochromic behaviors and UV-vis absorption spectra of **2** upon UV light (335-395 nm) illumination.

Fig. S11 The EPR spectra of 1, 1P-UV and 1P-UV-heating (a), and 2, 2P-UV and 2P-UV-heating (b).

Fig. S12 Cd 3d (a), C 1s (b), N 1s (c) and O 1s (d) XPS core-level spectra of 1 and 1P.

Fig. S13 Cd 3d (a), C 1s (b), N 1s (c) and O 1s (d) XPS core-level spectra of 2 and 2P.

Fig. S14 The photochromic behaviors of 3-/4-PMNDI (a), and the UV-vis absorption spectra of 3-PMNDI (b) and 4-PMNDI (c) under excitation of different visible-light wavelengths.

2. Tables

Table S1 Cr	ystallographic	data and re	finement pa	arameters of c	compounds 1 and 2.
-------------	----------------	-------------	-------------	----------------	--------------------

_	Compounds	1	2
	CCDC code	2110413	2110414
	Empirical formula	$C_{52}H_{34}CdN_5O_{13}$	$C_{41}H_{22}CdN_5O_9$
	Formula weight	1049.24	841.03
	Temperature (K)	293(2)	293(2)
	Crystal system	monoclinic	orthorhombic
	Space group	<i>l</i> ₂ /a	Pccn
	<i>a</i> (Å)	15.0583(10)	20.383(4)
	b (Å)	13.6049(9)	20.776(4)
	<i>c</i> (Å)	23.4146(15)	16.393(3)
	α (°)	90	90
	β (°)	106.508(4)	90
	γ (°)	90	90
	<i>V</i> (Å ³)	4599.1(5)	6942(2)
	Ζ	4	8
	D_c (g cm ⁻³)	1.515	1.609
	μ (mm ⁻¹)	0.550	0.698
	F(000)	2132.0	3384.0
	Crystal size(mm ³)	0.253 × 0.125 × 0.029	0.211 × 0.135 × 0.045
	Θ range (°)	5.778 to 56.672	5.054 to 39.682
	Reflections collected	33566	89401
	R _{int}	0.0271	0.0480
	Data/restraints/parameters	5724/20/336	3156/172/551
	Goodness-of-fit on F^2	1.090	1.083
	R_1/wR_2 , $[I \ge 2\sigma(I)]^{a,b}$	0.0389/0.1099	0.0487/0.1299
	R_1/wR_2 , $[I \ge 2\sigma(I)]^{a,b}$ [all data]	0.0480/0.1153	0.0549/0.1345
	$a R_1 = \sum F_0 - F_c / \sum F_0 $	$^{b}wR_{2} = [\sum w(F_{0}^{2} - F_{c}^{2})^{2} / \sum w(F_{0}^{2})^{2}]^{1/2}$	

	Compound 1				
Cd(1)-O(7)	2.334(3)	C(4)-C(5)	1.385(4)		
Cd(1)-O(3)	2.5583(19)	C(4)-C(6)	1.505(4)		
Cd(1)-O(3)#1	2.5584(19)	C(7)-C(12)	1.479(4)		
Cd(1)-O(4)	2.3365(19)	C(8)-C(9)	1.477(3)		
Cd(1)-O(4)#1	2.3366(19)	C(9)-C(10)	1.371(4)		
Cd(1)-N(1)	2.320(2)	C(9)-C(13)	1.405(3)		
Cd(1)-N(1)#1	2.320(2)	C(10)-C(11)	1.407(4)		
O(1)-C(8)	1.210(3)	C(11)-C(12)#2	1.369(4)		
O(7)-C(26)	1.184(6)	C(12)-C(11)#2	1.369(4)		
O(7)-C(26)#1	1.184(6)	C(12)-C(13)	1.409(3)		
O(2)-C(7)	1.206(3)	C(13)-C(13)#2	1.417(5)		
O(3)-C(14)	1.257(3)	C(14)-C(15)	1.509(3)		
O(4)-C(14)	1.248(3)	C(15)-C(16)	1.369(4)		
O(5)-C(25)	1.216(4)	C(15)-C(20)	1.426(4)		
O(6)-C(25)	1.292(4)	C(16)-C(17)	1.394(4)		
N(1)-C(1)	1.338(3)	C(17)-C(18)	1.379(4)		
N(1)-C(5)	1.334(3)	C(18)-C(19)	1.422(4)		
N(2)-C(6)	1.482(3)	C(18)-C(25)	1.504(4)		
N(2)-C(7)	1.396(4)	C(19)-C(20)	1.437(3)		
N(2)-C(8)	1.387(3)	C(19)-C(24)	1.423(4)		
N(3)-N(3)#1	1.263(12)	C(20)-C(21)	1.416(4)		
N(3)-C(26)	1.433(8)	C(21)-C(22)	1.362(5)		
N(3)-C(28)	1.382(8)	C(22)-C(23)	1.400(5)		
C(1)-C(2)	1.368(4)	C(23)-C(24)	1.360(5)		
C(2)-C(3)	1.383(4)	C(26)-C(26)#1	1.706(13)		
Symmetry code: #1 1/2	-x, +y, -z; #1 -1/2-x, 1/	/2-γ, -1/2-z			
O(7)-Cd(1)-O(3)#1	85.72(4)	O(2)-C(7)-C(12)	123.1(3)		
O(7)-Cd(1)-O(3)	85.72(4)	N(2)-C(7)-C(12)	116.6(2)		
O(7)-Cd(1)-O(4)	137.58(4)	O(1)-C(8)-N(2)	120.4(2)		

 Table S2 Selected bond lengths (Å) and angles (°) of 1 and 2.

O(7)-Cd(1)-O(4)#1	137.58(4)	O(1)-C(8)-C(9)	122.3(3)
O(3)-Cd(1)-O(3)#1	171.43(8)	N(2)-C(8)-C(9)	117.3(2)
O(4)#1-Cd(1)-O(3)	135.62(6)	C(10)-C(9)-C(8)	120.5(2)
O(4)#1-Cd(1)-O(3)#1	52.81(6)	C(10)-C(9)-C(13)	120.1(2)
O(4)-Cd(1)-O(3)#1	135.62(6)	C(13)-C(9)-C(8)	119.5(2)
O(4)-Cd(1)-O(3)	52.81(6)	C(9)-C(10)-C(11)	120.8(3)
O(4)-Cd(1)-O(4)#1	84.84(9)	C(12)#2-C(11)-C(10)	120.1(2)
N(1)#1-Cd(1)-O(7)	80.92(6)	C(11)#2-C(12)-C(7)	119.9(2)
N(1)-Cd(1)-O(7)	80.92(6)	C(11)#2-C(12)-C(13)	120.3(2)
N(1)#1-Cd(1)-O(3)	85.23(7)	C(13)-C(12)-C(7)	119.8(2)
N(1)-Cd(1)-O(3)	93.41(7)	C(9)-C(13)-C(12)	121.3(2)
N(1)#1-Cd(1)-O(3)#1	93.42(7)	C(9)-C(13)-C(13)#2	119.4(3)
N(1)-Cd(1)-O(3)#1	85.23(7)	C(12)-C(13)-C(13)#2	119.3(3)
N(1)-Cd(1)-O(4)#1	101.51(7)	O(3)-C(14)-C(15)	121.5(2)
N(1)#1-Cd(1)-O(4)	101.51(7)	O(4)-C(14)-O(3)	121.6(2)
N(1)-Cd(1)-O(4)	91.91(7)	O(4)-C(14)-C(15)	116.9(2)
N(1)#1-Cd(1)-O(4)#1	91.92(7)	C(16)-C(15)-C(14)	116.1(2)
N(1)-Cd(1)-N(1)#1	161.84(11)	C(16)-C(15)-C(20)	119.6(2)
C(26)#1-O(7)-Cd(1)	133.9(3)	C(20)-C(15)-C(14)	124.3(2)
C(26)-O(7)-Cd(1)	133.9(3)	C(15)-C(16)-C(17)	121.5(2)
C(26)#1-O(7)-C(26)	92.2(7)	C(18)-C(17)-C(16)	121.0(3)
C(14)-O(3)-Cd(1)	87.31(14)	C(17)-C(18)-C(19)	119.7(2)
C(14)-O(4)-Cd(1)	97.95(15)	C(17)-C(18)-C(25)	117.0(3)
C(1)-N(1)-Cd(1)	119.88(17)	C(19)-C(18)-C(25)	123.3(3)
C(5)-N(1)-Cd(1)	121.22(17)	C(18)-C(19)-C(20)	119.1(2)
C(5)-N(1)-C(1)	118.2(2)	C(18)-C(19)-C(24)	123.2(2)
C(7)-N(2)-C(6)	116.8(2)	C(24)-C(19)-C(20)	117.7(3)
C(8)-N(2)-C(6)	118.0(2)	C(15)-C(20)-C(19)	119.1(2)
C(8)-N(2)-C(7)	125.2(2)	C(21)-C(20)-C(15)	122.1(2)
N(3)#1-N(3)-C(26)	98.9(4)	C(21)-C(20)-C(19)	118.7(2)
N(3)#1-N(3)-C(28)	145.8(6)	C(22)-C(21)-C(20)	121.3(3)
C(28)-N(3)-C(26)	115.4(7)	C(21)-C(22)-C(23)	120.1(3)

 N(1)-C(1)-C(2)	122.3(3)	C(24)-C(23)-C(22)	120.8(3)
C(1)-C(2)-C(3)	119.0(3)	C(23)-C(24)-C(19)	121.3(3)
C(4)-C(3)-C(2)	119.7(3)	O(5)-C(25)-O(6)	121.8(3)
C(3)-C(4)-C(5)	117.2(2)	O(5)-C(25)-C(18)	125.2(3)
C(3)-C(4)-C(6)	121.8(2)	O(6)-C(25)-C(18)	112.4(3)
C(5)-C(4)-C(6)	121.0(2)	O(7)-C(26)-N(3)	125.0(6)
N(1)-C(5)-C(4)	123.5(2)	O(7)-C(26)-C(26)#1	43.9(3)
N(2)-C(6)-C(4)	113.3(2)	N(3)-C(26)-C(26)#1	81.1(4)
 O(2)-C(7)-N(2)	120.3(3)		
 Symmetry code: #1 1/2-	x, +y, -z; #2 -1/2-x, 1,	/2-y, -1/2-z	
	Co	ompound 2	
 Cd(1)-O(1)	2.247(5)	N(1)-C(1)	1.318(10)
Cd(1)-O(2)#1	2.282(6)	N(1)-C(5)	1.326(9)
Cd(1)-O(3)#2	2.400(6)	N(2)-C(6)	1.480(10)
Cd(1)-O(4)#2	2.409(6)	N(2)-C(7)	1.387(10)
Cd(1)-N(1)	2.344(6)	N(3)-C(19)	1.395(13)
Cd(1)-N(4)#3	2.318(6)	N(3)-C(20)	1.384(14)
Cd(1)-C(38)#2	2.732(9)	N(4)-C(24)	1.342(11)
O(1)-C(27)	1.261(9)	N(4)-C(25)	1.322(10)
O(2)-Cd(1)#1	2.282(6)	C(1)-C(2)	1.388(11)
O(3)-C(38)	1.225(10)	C(2)-C(3)	1.362(10)
O(4)-Cd(1)#4	2.409(6)	C(3)-C(4)	1.376(10)
O(4)-C(38)	1.256(10)	C(3)-C(6)	1.498(11)
O(5)-C(8)	1.220(9)	O(9)-C(39)	1.28(2)
O(6)-C(7)	1.207(9)	O(9)-C(39A)	1.23(2)
 O(7)-C(19)	1.208(11)		
 Symmetry code: #1 -x, 1	-y, 1-z; #2 -1/2+x, 1-y	y, 1/2-z; #3 +x, 1+y, +z; #4	↓ 1/2+x, 1-γ, 1/2-z
O(1)-Cd(1)-O(2)#1	118.9(2)	C(10)-C(15)-C(14)	118.7(9)
O(1)-Cd(1)-O(3)#2	94.4(2)	C(10)-C(15)-C(16)	119.2(8)
O(1)-Cd(1)-O(4)#2	148.2(2)	C(16)-C(15)-C(14)	122.1(8)
O(1)-Cd(1)-N(1)	87.2(2)	C(15)-C(16)-C(20)	118.7(10)
O(1)-Cd(1)-N(4)#3	95.3(2)	C(17)-C(16)-C(15)	120.4(8)

O(1)-Cd(1)-C(38)#2	120.9(3)	C(16)-C(17)-C(18)	121.3(8)
N(1)-Cd(1)-O(3)#2	81.6(2)	C(9)-C(18)-C(17)	119.6(8)
N(1)-Cd(1)-O(4)#2	89.1(2)	C(33)-C(28)-C(27)	123.6(7)
N(1)-Cd(1)-C(38)#2	82.7(2)	C(28)-C(29)-C(30)	121.9(7)
N(4)#3-Cd(1)-O(3)#2	101.5(2)	C(31)-C(30)-C(29)	120.5(8)
N(4)#3-Cd(1)-O(4)#2	90.5(2)	C(30)-C(31)-C(32)	120.0(7)
N(4)#3-Cd(1)-N(1)	175.7(2)	C(30)-C(31)-C(38)	118.4(7)
N(4)#3-Cd(1)-C(38)#2	98.8(2)	C(32)-C(31)-C(38)	121.6(7)
C(27)-O(1)-Cd(1)	124.4(5)	C(31)-C(32)-C(33)	118.9(7)
C(27)-O(2)-Cd(1)#1	148.1(5)	C(37)-C(32)-C(31)	122.1(7)
C(5)-N(1)-Cd(1)	117.7(5)	C(37)-C(32)-C(33)	118.9(7)
C(7)-N(2)-C(6)	116.7(7)	C(32)-C(33)-C(28)	120.5(7)
C(1)-N(1)-Cd(1)	124.0(5)	C(34)-C(33)-C(28)	121.7(7)
C(1)-N(1)-C(5)	116.6(7)	C(34)-C(33)-C(32)	117.7(7)
 C(17)-C(16)-C(20)	121.0(10)	C(35)-C(34)-C(33)	121.0(8)
Symmetry code: #1 -x, 1-y, 1	L-z; #2 -1/2+x, 1-y	, 1/2-z; #3 +x, 1+y, +z; #3 1	L/2+x, 1-y, 1/2-z;

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
C(3)-H(3)O(1)	0.93	2.44	3.361(4)	173
C(5)-H(5)O(2)	0.93	2.55	3.238(3)	131
C(6)-H(6A)O(2)	0.97	2.34	2.688(4)	100
C(17)-H(17)O(6)	0.93	2.29	2.642(4)	102

Table S3 Hydrogen bonds of compound 1 (Å and °).