Supporting Information for

Bimetallic sulfide particles incorporated in Fe/Co-based metalorganic framework ultrathin nanosheets toward boosted

electrocatalysis of the oxygen evolution reaction

Rui Yu, a Cheng Wang, a Dongmei Liu, a Zhengying Wu, *b Jie Li a and Yukou Du *a

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow

University, Suzhou 215123, PR China

^b Jiangsu Key Laboratory for Environment Functional Materials, School of Chemical

Biology and Materials Engineering, Suzhou University of Science and Technology,

Suzhou 215009, PR China

* Corresponding author: Tel: 86-512-65880967, Fax: 86-512-65880089; E-mail: zywu@mail.usts.edu.cn (Z. Wu); duyk@suda.edu.cn (Y. Du)

1. Experimental Section

1.1 Chemical reagents

N, N-dimethylformamide (DMF, reagent, 99.5%) was bought from Aladdin. Co(NO₃)₂·6H₂O (99.99%) was purchased from Shanghai Macklin Biochemical. KOH (analytical reagent), Ni(NO₃)₂·6H₂O (\geq 98.5%), Cu(NO₃)₂·3H₂O, Fe(NO₃)₃·9H₂O (\geq 98.6%), Terephthalic acid (TPA, 99%), isopropanol (C₃H₈O, >99.7%) and ethanol (C₂H₅OH) were bought from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Thioacetamide (TAA, 99%) was bought from J&K Scientific Ltd., AEF. Nafion (5 wt%) was bought from Sigma-Alirich. All reagents were directly employed without extra additional handling.

1.2 Synthesis of CoM(M=Fe, Ni, Cu)-MS/MOF, CoFe-MOF and (Fe)-Co₃S₄

In the preparation of CoFe-MS/MOF, TPA (66.5 mg), $Co(NO_3)_2 \cdot 6H_2O$ (111.65 mg), Fe(NO₃)₃ ·9H₂O (38.784 mg), and TAA (50 mg) were dispersed in 10 mL of DMF and 4 mL ethanol, subsequently stirred for 20 min to yield a homogeneous solution. The solution was transferred to a Teflon autoclave to heat at 150 °C for five hours. The resultant substances were rinsed with distilled water, centrifuged, and subsequently dried in an oven at 60 °C to yield CoFe-MS/MOF. For comparison, other CoFe-MS/MOF electrocatalysts with different Fe/Co ratios were synthetized as well. The synthesis procedures for CoNi-MS/MOF and CoCu-MS/MOF were similar to those for CoFe-MS/MOF except changing Fe(NO₃)₃·9H₂O to Ni(NO₃)₂·6H₂O and Cu(NO₃)₂·3H₂O, respectively. CoFe-MOF and (Fe)-Co₃S₄ were synthesized using the similar procedures as that of CoFe-MS/MOF in the absence of TAA and TPA, respectively.

1.3 Fabrication of Pt/C and RuO₂ Electrodes

1 mg of Pt/C (20wt%) or 6 mg RuO₂ powder (\geq 75.2%) was dispersed in the mixture of isopropanol (1.0 mL) and Nafion solution (5 wt%, 25 µL), respectively. After ultrasonic treatment for 30 min to obtain a homogeneous ink, 20 µL of ink was dropped on the glassy carbon electrode and dried at 60 °C. At this point, Pt/C and RuO2 electrodes were successfully fabricated.

1.4 Material Characterizations

The phase composition and purity of the samples were analyzed by powder X-ray diffraction (XRD) with Cu K α radiation ($\lambda = 1.54$ Å). Scanning electron microscopy (SEM) was operated at 15 kV. Further morphological characterizations of samples were conducted by transmission electron microscope (TEM) operated at 120 kV and

high-resolution TEM (HRTEM) using a TecnaiG2F20 TEM operated at 200 kV. Xray photoelectron spectroscopy (XPS) measurement was conducted by Thermo Scientifc's EXCALAB 250 XI system. Raman spectra were recorded under ambient conditions by XploRA Plus micro-Raman spectrometer from Horiba Jobin Yvon.

1.5 Electrochemical characterization

All electrochemical tests were conducted on CHI660 workstation (Chenhua, Shanghai) by employing the three-electrode system, in which the glassy carbon (GC), Ag/AgCl and carbon rod served as the working electrode, reference electrode and counter electrode in 1 M KOH, separately. To fabricated working electrodes, 4 mg catalysts and 2mg toners were dispersed in hybrid solution containing 1.0 mL of isopropanol and 30 μ L Nafion. After 30-minute ultrasound, the appropriate amount of catalyst ink was dripped onto the GC electrodes (diameter: 5 mm, area: 0.196 cm²). Polarization curves were obtained by linear sweep voltammetry (LSV) measurements at a scan rate of 5 mV s⁻¹ without iR compensation. The Tafel slopes were derived from polarization curves. CV test is performed at sweep rates ranging from 10 to 50 mV/s. Electrochemical impedance spectroscopy (EIS) was conducted in the frequency region from 1 Hz to 500 kHz. Chronopotentiometry measurement was conducted at the current density of 10 mA cm⁻². The i-t curve was tested at a potential of 1.5 V (vs. RHE). Electrochemical water splitting was measured by employing a dual-electrode system.

2. Supporting Figures and Tables

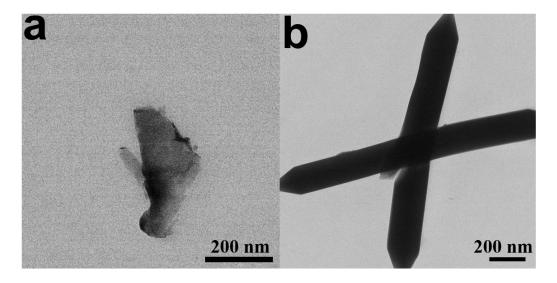


Fig.S1 TEM images of (a) CoNi-MS/MOF, (b) CoCu-MS/MOF.

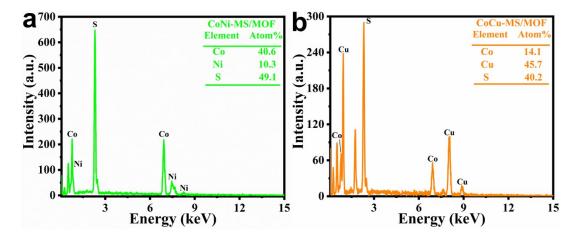
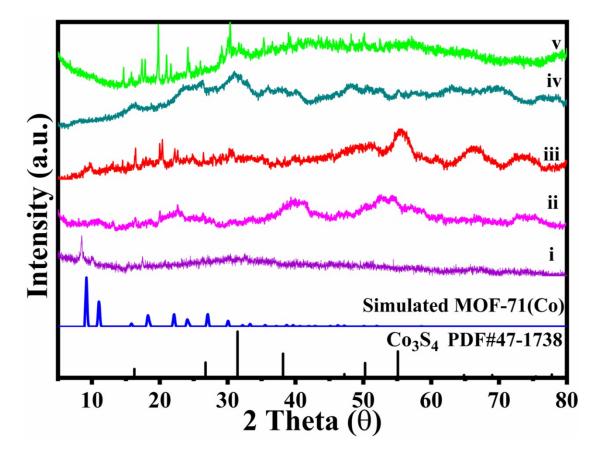



Fig.S2 EDX spectrum and atomic percentages of (a) CoNi-MS/MOF and (b) CoCu-MS/MOF.

Fig.S3 XRD patterns of (i) CoFe-MOF, (ii) (Fe)-Co₃S₄ and different CoFe-MS/MOF samples synthesized with different mount of TAA (iii) 0.05 g, (iv) 0.08 g, and (v) 0.11 g.

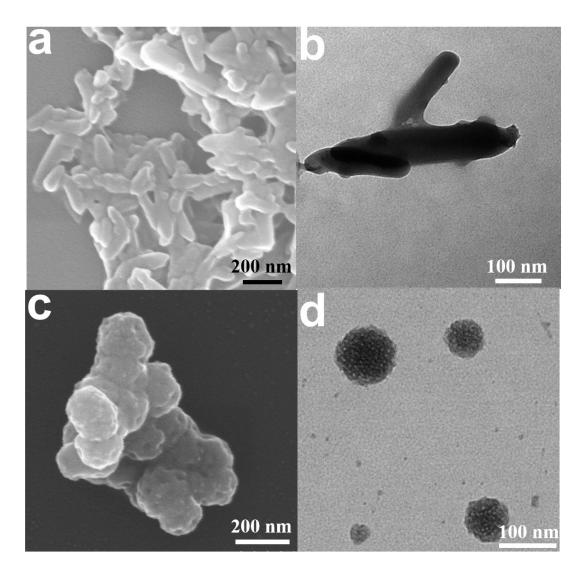


Fig.S4 (a) SEM image and (b) TEM image of CoFe- MOF. (c) SEM image and (d) TEM image of (Fe)-Co₃S₄.

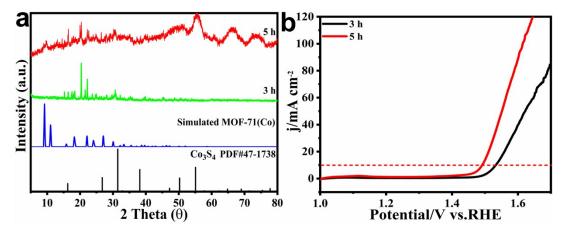
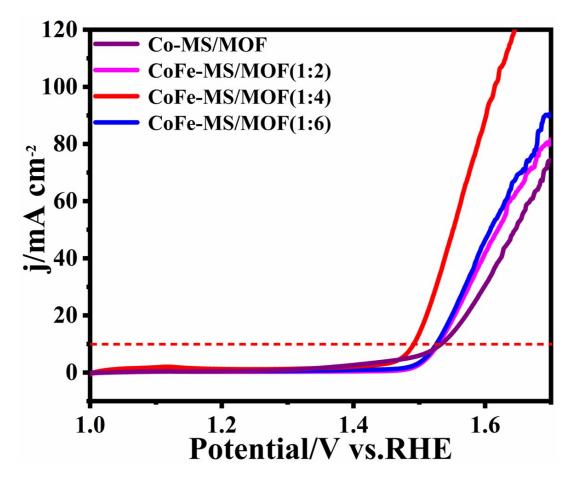



Fig.S5 (a) XRD patterns of CoFe-MS/MOF synthesized with 3 and 5 h reaction; (b)

OER polarization curves of CoFe-MS/MOF electrodes synthesized with 3 h and 5 h reaction time without iR compensation.

Fig.S6 OER polarization curves of a batch of CoFe-MS/MOF electrodes synthesized with different Fe/Co dosage ratios without iR compensation.

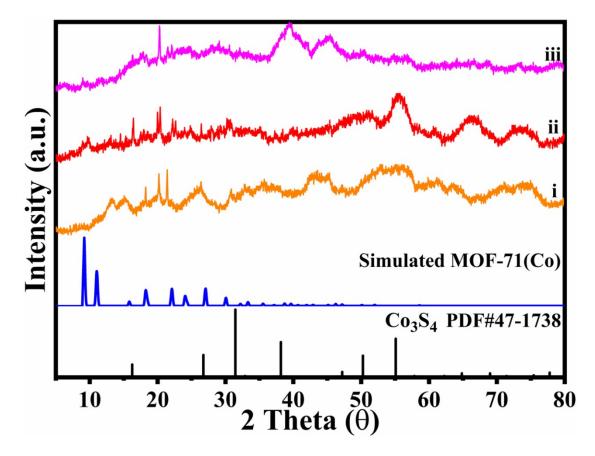
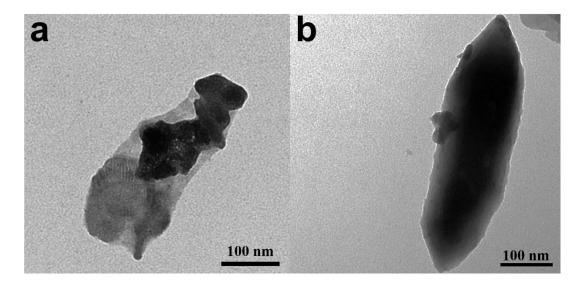
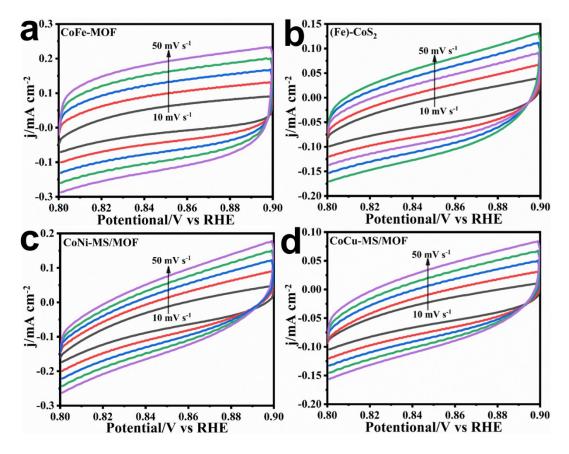




Fig.S7 XRD patterns of CoFe-MS/MOF samples synthesized with different Fe/Co dosage ratio of (i) 1:2, (ii) 1:4, (iii) 1:6.

Fig.S8 TEM images of CoFe-MS/MOF synthesized with Fe/Co dosage ratio of (a) 1:2 and (b) 1:6.

Fig.S9 CV curves of (a) CoFe-MOF, (b) (Fe)-Co₃S₄, (c) CoNi-MS/MOF, and (d) CoCu-MS/MOF with scan rates ranging from 10 to 50 mV s⁻¹. By plotting the capacitive currents (ΔJ , (J_a - J_c)/2) against the scanning rate and following with a linear fit, the C_{dl} was estimated as the slope.

samples	CoFe-MS/MOF	CoFe-	(Fe)-Co ₃ S ₄	CoNi-MS/MOF	CoCu-MS/MOF
1		MOF			
R _s	5.85	6.16	6.21	5.21	6.37
R _{ct}	9.50	51.8	10.10	72.92	14.60

 Table S1 The transfer resistances obtained from Nyquist plots in 1.0 M KOH solution.

Table S2 Comparison of the electrocatalytic OER performance of the as-prepared

catalysts at 10 mA cm⁻² in 1.0 M KOH.

ootolyata	Overpotential	Tafel slope (mV	$C_{\rm c}$ (mE cm ⁻²)
catalysts	(mV) dec ⁻¹)		C_{dl} (mF cm ⁻²)
CoFe-MS/MOF	261	60.3	7.71
CoFe-MOF	312	73.6	2.94
(Fe)-Co ₃ S ₄	305	67.1	1.64
CoNi-MS/MOF	304	111.8	1.94
CoCu-MS/MOF	298	130.2	1.22