Supporting information

Precursor-converted Formation of Bimetal-Organic Framework

Nanosheets for Efficient Oxygen Evolution Reaction

Lei Xia^{a,b}, Crystal Bowers^c, Pei Dong^c, Mingxin Ye^{*a}, Jianfeng Shen^{*a}

^a Institute of special materials and technology, Fudan University, Shanghai 200433, China

^b Department of Chemistry, Fudan University, Shanghai 200433, China.

^c Department of Mechanical Engineering, George Mason University, VA 22030, USA

Corresponding author: mxye@fudan.edu.cn; jfshen@fudan.edu.cn

Figure S1. SEM images of NiFe-MOF@NF under different reaction times. a) 0 h, b) 1 h, c) 3 h and d) 6 h.

Figure S2. a) XRD patterns and b) FT-IR spectra of NiFe-MOF@NF under different reaction times of 0 h, 1 h, 3 h, and 6 h.

Figure S3. Raman spectrum of NiFe-MOF@NF.

Figure S4. The survey XPS spectra of NiFe-MOF@NF and pristine NiFe-LDH@NF.

Figure S5. a) The reverse scan from 1.66 to 1.06 V (vs. RHE) for NiFe MOF@NF in 1 M KOH electrolyte; b) Tafel plot of NiFe-MOF@NF recorded using steady state test.

Figure S6. CV curves of (a) NiFe-LDH@NF, (b) NiFe-MOF@NF at different scan rates from 10 to 100 mV s⁻¹.

Figure S7. LSV curves before and after 2000 CV of NiFe-MOF@NF.

Figure S8. The SEM image of NiFe-MOF@NF electrode after the stability test.

Figure S9. The survey XPS spectra of NiFe-MOF@NF before and after the durability test.

Figure S10. a) Ni 2p and b) Fe 2p spectra of fresh NiFe-MOF@NF and corresponding catalyst after the durability test.

Electrocatalyst	Overpotential (mV)	Tafel slope (dec ⁻¹)	Electrolyte	Reference
NiFe-MOF@NF	265@10mA cm ⁻²	38.1	1М КОН	This work
NiCo-BDC BMNSs	230@10mA cm ⁻²	61	1М КОН	1
MCCF/NiMn-MOFs	280@10mA cm ⁻²	86	1М КОН	2
NiFe-BTC-GNPs MOF	220@10mA cm ⁻²	51	1М КОН	3
Fe/Ni _{2.4} /Co _{0.4} -MIL-53	236@20mA cm ⁻²	52.2	1М КОН	4
CoNi-MOFNA	215@10mA cm ⁻²	51.6	1М КОН	5
MIL-53(FeNi)/NF	233@50mA cm ⁻²	31.3	1М КОН	6
Co ₃ Fe-MOF	280@10mA cm ⁻²	38	1М КОН	7
Ni–Fe–MOF NSs	221@10mA cm ⁻²	56	1М КОН	8
MOF-Fe/Co(1:2)	238@10mA cm ⁻²	52	1М КОН	9
D-Ni-MOF NSA	219@10mA cm ⁻²	48.2	1М КОН	10
CoZn MOF/CC	287@10mA cm ⁻²	76.3	1M KOH	11
CoNiBDC/CA-350	192@10mA cm ⁻²	39	1M KOH	12

Table S1. OER performances comparison of the electrocatalysts and NiFe-MOF@NF.

Reference

- B. Wang, J. Shang, C. Guo, J. Zhang, F. Zhu, A. Han and J. Liu, A General Method to Ultrathin Bimetal-MOF Nanosheets Arrays via In Situ Transformation of Layered Double Hydroxides Arrays, *Small*, 2019, 15, e1804761.
- W. Cheng, X. F. Lu, D. Luan and X. W. D. Lou, NiMn-Based Bimetal-Organic Framework Nanosheets Supported on Multi-Channel Carbon Fibers for Efficient Oxygen Electrocatalysis, *Angew Chem Int Ed Engl*, 2020, **59**, 18234-18239.
- 3. P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A. N. Singh, A. M. Harzandi and K. S. Kim, Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen

electrodes for sustained alkaline anion exchange membrane water electrolysis, *Energy & Environmental Science*, 2020, **13**, 3447-3458.

- F. L. Li, Q. Shao, X. Huang and J. P. Lang, Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis, *Angew Chem Int Ed Engl*, 2018, 57, 1888-1892.
- L. Huang, G. Gao, H. Zhang, J. Chen, Y. Fang and S. Dong, Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for efficient oxygen evolution, *Nano Energy*, 2020, 68, 104296.
- 6. F. Sun, G. Wang, Y. Ding, C. Wang, B. Yuan and Y. Lin, NiFe-Based Metal-Organic Framework Nanosheets Directly Supported on Nickel Foam Acting as Robust Electrodes for Electrochemical Oxygen Evolution Reaction, *Advanced Energy Materials*, 2018, 8, 1800584.
- W. Li, W. Fang, C. Wu, K. N. Dinh, H. Ren, L. Zhao, C. Liu and Q. Yan, Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction, *Journal of Materials Chemistry A*, 2020, 8, 3658-3666.
- F. L. Li, P. Wang, X. Huang, D. J. Young, H. F. Wang, P. Braunstein and J. P. Lang, Large-Scale, Bottom-Up Synthesis of Binary Metal-Organic Framework Nanosheets for Efficient Water Oxidation, *Angew Chem Int Ed Engl*, 2019, **58**, 7051-7056.
- 9. K. Ge, S. Sun, Y. Zhao, K. Yang, S. Wang, Z. Zhang, J. Cao, Y. Yang, Y. Zhang, M. Pan and L. Zhu, Facile Synthesis of Two-Dimensional Iron/Cobalt Metal-Organic Framework for Efficient Oxygen Evolution Electrocatalysis, *Angew Chem Int Ed Engl*, 2021, **60**, 12097-12102.
- J. Zhou, Y. Dou, X. Q. Wu, A. Zhou, L. Shu and J. R. Li, Alkali-Etched Ni(II)-Based Metal-Organic Framework Nanosheet Arrays for Electrocatalytic Overall Water Splitting, *Small*, 2020, 16, 1906564.
- J. Wu, Z. Yu, Y. Zhang, S. Niu, J. Zhao, S. Li and P. Xu, Understanding the Effect of Second Metal on CoM (M = Ni, Cu, Zn) Metal-Organic Frameworks for Electrocatalytic Oxygen Evolution Reaction, *Small*, 2021, 17, 2105150.
- X. J. Bai, X. Y. Lu, R. Ju, H. Chen, L. Shao, X. Zhai, Y. N. Li, F. Q. Fan, Y. Fu and W. Qi, Preparation of MOF Film/Aerogel Composite Catalysts via Substrate-Seeding Secondary-Growth for the Oxygen Evolution Reaction and CO2 Cycloaddition, *Angew Chem Int Ed Engl*, 2021, 60, 701-705.