Electronic Supplementary Information

Tunable Third-Order Nonlinear Optical Effect via Modifying Ti₄(embonate)₆ Cage-Based Ionic Pairs

Guang-Hui Chen, Yan-Ping He *, Zi-Rui Wang, Qiao-Hong Li, Zhi-Zhou Ma, and Jian Zhang *

G.-H. Chen, Y.-P. He, Z.-R. Wang, Q.-H. Li, Z.-Z. Ma, J. Zhang State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. E-mail: hyp041@163.com; zhj@fjirsm.ac.cn

Y.-P. He

University of Chinese Academy of Sciences, Beijing 100049, P. R. China. E-mail: hyp041@163.com

Contents

1. The PXRD Analyses for PTCs	3
2. Detailed Structure Information for PTCs	5
3. The SEM-Mapping Spectra of PTCs	.17
4. The EDS Spectra of PTCs	.18
5. The UV-Vis Spectra of PTCs	.20
6. The FT-IR Spectra of PTCs	.22
7. The TGA curve of PTCs	.23
8. The XPS Spectra of PTCs	.25
9. The NLO Property and NICS(0) Method Studies of PTCs	.28
10. Crystallography Data	.32
11. Reference	.33

1. The PXRD Analyses for PTCs

Figure S1. The PXRD patterns of simulated from the single-crystal data of PTC-293 (black), as-synthesized PTC-293 (red).

Figure S2. The PXRD patterns of simulated from the single-crystal data of PTC-294 (black), as-synthesized PTC-294 (red).

Figure S3. The PXRD patterns of simulated from the single-crystal data of PTC-295 (black), as-synthesized PTC-295 (red).

Figure S4. The PXRD patterns of simulated from the single-crystal data of PTC-296 (black), as-synthesized PTC-296 (red).

2. Detailed Structure Information for PTCs.

Figure S5. Illustration of the structures of the embonate (L) ligand, the $\Delta\Delta\Delta\Delta$ -[Ti₄L₆] and $\Lambda\Lambda\Lambda\Lambda$ -[Ti₄L₆] isomers in PTC-101.¹

Figure S6. The asymmetric unit of **PTC-293**, showing one Ti_4L_6 cage, one $[Cu(Me_2phen)_2]^+$ cation and some free $(NH_4)^+$ cations which could not be located because of highly disorder.

Figure S7. The highlighting of the $C-H\cdots\pi$ and the $C-H\cdots O$ weak interactions between adjacent Ti_4L_6 cage and $[Cu(Me_2phen)_2]^+$ cation or two Ti_4L_6 cages, respectively.

Figure S8. (a) Molecular packing diagram of PTC-293 co-crystals projected along the crystallographic b-axis. (b) Schematic illustration of Ti₄(embonate)₆-based ionic pairs methodology with conventional parallel-type cation–anion assembly with alternating cation and anion layers.

Figure S9. The asymmetric unit of PTC-294, showing one Ti_4L_6 cage, two $[Fe(phen)_3]^{2+}$ cations, and some free $(NH_4)^+$ cations.

Figure S10. The highlighting of the $\pi \cdots \pi$ stacking and C-H $\cdots \pi$ interactions between adjacent $[Fe(phen)_3]^{2+}$ cations as well as the C-H \cdots O hydrogen bonds between adjacent Ti₄L₆ cage and $[Fe(phen)_3]^{2+}$ cation, respectively.

Figure S11. (a) Molecular packing diagram of PTC-294 co-crystals projected along the crystallographic b-axis. (b) Schematic illustration of Ti₄(embonate)₆-based ionic pairs methodology with conventional parallel-type cation–anion assembly with alternating cation and anion layers.

Figure S12. The asymmetric unit of PTC-295, showing one Ti_4L_6 cage, two $[Fe(Me_4phen)_3]^{3+}$ cations and some free $(NH_4)^+$ cations.

Figure S13. The highlighting of the $\pi \cdots \pi$ stacking and C-H $\cdots \pi$ interactions between adjacent Ti₄L₆ cage and [Fe(Me₄phen)₃]³⁺ cation.

Figure S14. (a) Molecular packing diagram of PTC-295 co-crystals projected along the crystallographic a-axis. (b) Schematic illustration of Ti₄(embonate)₆-based ionic pairs methodology with conventional parallel-type cation–anion assembly with alternating cation and anion layers.

Figure S15. (a) The asymmetric unit of PTC-296, showing one third of Ti₄L₆ cage and one [Fe(Ph₂phen)₃]³⁺ cation, one Ph₂phen ligand and some free (NH₄)⁺ cations. (b) ORTEP diagram for PTC-296 with the ellipsoids drawn at the 30% probability level. (c) Sphere packing representations of the PTC-296.

Figure S16. Structural assembly process of PTC-296. Atom color code: green, Ti; cyan, Cu; modena, Fe; red, O; blue, N; gray, C; offwhite, H.

Figure S17. The schematic diagram of $\pi \cdots \pi$ in **PTC-296**.

Figure S18. The schematic diagram of C-H \cdots π in **PTC-296**.

Figure S19. Illustration the intergration of Ti_4L_6 cage, Ph_2 phen ligand and $[Fe(Ph_2phen)_3]^{3+}$ unit into a 3D supramolecular architecture of **PTC-296**.

Figure S20. (a) Matching between the calixarene-like oxygen vertices of the Ti_4L_6 cage and the $[Fe(Ph_2phen)_3]^{3+}$ unit through C–H…O hydrogen bonds in PTC-296; (b) the 3D packing superstructure of PTC-296 along the a-axis direction.

Figure S21. (a) Molecular packing diagram of **PTC-296** co-crystals projected. (b) Schematic illustration of Ti₄(embonate)₆-based ionic pairs methodology with conventional parallel-type cation–anion assembly with alternating cation and anion layers.

3. The SEM-Mapping Spectra of PTCs

Figure S22. The SEM-mapping spectra of PTC-293. From left to right are crystal appearance, titanium, and copper elements.

500µm

Figure S23. The SEM-mapping spectra of PTC-294. From left to right are crystal appearance, titanium, and iron elements.

300µm Γ

Figure S24. The SEM-mapping spectra of PTC-295. From left to right are crystal appearance, titanium, and iron elements.

300µm

Figure S25. The SEM-mapping spectra of PTC-296. From left to right are crystal appearance, titanium, and iron elements.

4. The EDS Spectra of PTCs

Figure S26. The EDS spectrum of compound PTC-293.

Figure S27. The EDS spectrum of compound PTC-294.

Figure S28. The EDS spectrum of compound PTC-295.

Figure S29. The EDS spectrum of compound PTC-296.

5. The UV-Vis Spectra of PTCs

Figure S30. The solid-state UV absorption spectra of PTC-293.

Figure S31. The solid-state UV absorption spectra of PTC-294.

Figure S32. The solid-state UV absorption spectra of PTC-295.

Figure S33. The solid-state UV absorption spectra of PTC-296.

Figure S34. The solid-state UV absorption spectra of PTC-101.

6. The FT-IR Spectra of PTCs

Figure S35. The FT-IR spectra of compounds PTC-293 to PTC-296.

7. The TGA curve of PTCs

Figure S37. The TGA curve of PTC-294.

Figure S38. The TGA curve of PTC-295.

Figure S39. The TGA curve of PTC-296.

8. The XPS Spectra of PTCs

Figure S40. The XPS spectra of PTC-293-Cu.

Figure S41. The XPS spectra of PTC-293-Ti.

Figure S42. The XPS spectra of PTC-294.

Figure S43. The XPS spectra of PTC-295.

Figure S44. The XPS spectra of PTC-296.

X-ray photoelectronspectroscopy (XPS) was used to characterize the Fe oxidation state. It has been shown in previous studies that the peak positions of Fe 2p1/2 and Fe 2p3/2 depend on the ionic states of Fe. In **PTC-294**, all Fe is in the Fe²⁺ state, while in **PTC-295** and **PTC-296**, iron is in mixed price state, but most of them are Fe³⁺ valency. This result is consistent with the raw material of iron.

9. The NLO Property and NICS(0) Method Studies of PTCs

Figure S45. Ti₄(embonate)₆-based ionic pairs with tunable nonlinear optics in our reported work and this work.²

Figure S46. The curves of output fluence versus input fluence for two thin films.

The curves of output fluence versus input fluence of KBr-based thin film and KBr-based **PTC-296** thin film reveal that the output fluence linearly increased at low incident fluence (Figure S46). But at high-incident fluence, the output fluence deviated from linearity represent typical behavior of NLO response for KBr-based **PTC-296** thin film.

Figure S47. The open-aperture Z-scan results at 532 nm for KBr-based PTC-293 thin film.

Figure S48. The open-aperture Z-scan results at 532 nm for KBr-based PTC-294 thin film and the linear transmittance (T_0) was set.

Figure S49. The open-aperture Z-scan results at 532 nm for KBr-based PTC-295 thin film and the linear transmittance (T_0) was set.

Figure S50. The open-aperture Z-scan results at 532 nm for KBr-based PTC-296 thin film and the linear transmittance (T_0) was set.

	Linear Transmittance (T ₀)	Normalized Transmittance	Nonlinear Absorption Coefficients (β(m/W*10 ⁻¹⁰))	Nucleus-Independent Chemical Shift (NICS(0))
PTC-293	0.43	0.91	6.00	-17.19
PTC-294	0.71	1.71	-11.50	-18.42
PTC-295	0.45	1.29	-8.30	-18.46
PTC-296	0.47	2.28	-16.10	-19.37

Table S1. Linear, NLO data and NICS(0) values of the samples.

To test the aromaticity of the selected series of 1,10-phenanthroline type ligands we calculated the Nucleus-Independent Chemical Shift (NICS) values, which has become the most widely applied index to assess aromaticity due to its simplicity and efficiency.³⁻⁵ NICS(0) values are defined as the value of absolute shielding observed at a ring center. Positive NICS(0) values denote antiaromaticity and negative NICS(0) values indicate the presence of aromatic character.

Figure S51. The NICS(0) values for selected 1,10-phenanthroline type ligands.

(Ph₂phen)

10. Crystallography Data

Table S2. Crystallographic Data and Structure Refinement Details for PTC-293 to PTC-296.

Compound	PTC-293	PTC-294	PTC-295	PTC-296
CCDC	2107093	2107094	2107095	2107096
Formula	$C_{166}H_{96}CuN_4O_{36}Ti$	${}^{4}C_{225}H_{157}Fe_{2}N_{17}O_{42}T_{2}$	i $C_{250}H_{204}Fe_2N_{16}O_{40}Ti$	$C_{446}H_{294}Fe_3N_{34}O_{36}Ti$
		4	4	4
$D_{calc.}$ / g cm ⁻³	1.124	1.232	1.125	1.209
μ/mm^{-1}	2.176	2.835	2.432	1.426
Formula	2977.60	4073.97	4375.58	7064.36
Weight				
Colour	orange	crimson	crimson	black
Shape	block	block	block	cube
Size/mm ³	0.30×0.20×0.10	0.30×0.20×0.10	0.30×0.20×0.10	0.30×0.20×0.10
T/K	100.00(19)	99.98(12)	100.00(16)	100.00(11)
Crystal System	monoclinic	triclinic	triclinic	trigonal
Space Group	Сс	<i>P</i> -1	<i>P</i> -1	R-3c
a/Å	31.8045(8)	17.6307(5)	19.8755(10)	40.7336(3)
b/Å	17.8553(3)	19.9692(6)	25.7801(10)	40.7336(3)
c/Å	34.7510(8)	34.0458(9)	25.8788(10)	81.0157(7)
$\alpha/^{\circ}$	90	99.561(2)	79.355(3)	90
β/°	116.935(3)	98.330(2)	83.215(4)	90
γI°	90	108.172(3)	85.683(4)	120
V/Å ³	17593.6(8)	10980.3(6)	12921.2(10)	116413.8(17)
Z	4	2	2	11.99988
Ζ'	1	1	1	0.333333
Wavelength/Å	1.54184	1.54184	1.54184	1.3405
Radiation type	CuK _α	CuKa	CuKa	GaKa
$\Theta_{min}/^{\circ}$	2.779	2.385	2.240	2.187
$\Theta_{max}/^{\circ}$	50.436	66.399	64.865	56.909
Measured	18376	74929	120694	156225
Refl's.				
Indep't Refl's	11000	34861	42767	26453
Refl's I≥2 σ(I)	10225	20925	21067	20850
R _{int}	0.0265	0.0747	0.0986	0.0333
Parameters	1883	2620	2835	1546
Restraints	712	249	444	132
Largest Peak	1.235	0.75	0.79	1.44
Deepest Hole	-0.397	-0.62	-0.78	-0.89
GooF	1.026	1.030	1.075	1.052
wR_2 (all data)	0.1627	0.1835	0.4488	0.3480
wR_2	0.1569	0.1572	0.3807	0.3249
R_1 (all data)	0.0620	0.1136	0.2012	0.1123
R_1	0.0577	0.0647	0.1358	0.0984

11. Reference

- He, Y.-P.; Yuan, L.-B.; Chen, G.-H.; Lin, Q.-P.; Wang, F.; Zhang, L.; Zhang, J. Water-Soluble and Ultrastable Ti₄L₆ Tetrahedron with Coordination Assembly Function. *J. Am. Chem. Soc.* 2017, *139*, 16845-16851.
- 2 He, Y.-P.; Chen, G.-H.; Li, D.-J.; Li, Q.-H.; Zhang, L.; Zhang, J. Combining a Titanium– Organic Cage and a Hydrogen-Bonded Organic Cage for Highly Effective Third-Order Nonlinear Optics. *Angew. Chem. Int. Ed.* **2021**, *60*, 2920-2923.
- 3 Williams, R. V.; Armantrout, J. R.; Twamley, B.; Mitchell, R. H.; Ward, T. R.; Bandyopadhyay, S. A Theoretical and Experimental Scale of Aromaticity. The First Nucleus-Independent Chemical Shifts (NICS) Study of the Dimethyldihydropyrene Nucleus. J. Am. Chem. Soc. 2002, 124, 13495-13505.
- 4 Ozer, M. S.; Menges, N.; Keskin, S.; Sahin, E.; Balci, M. Synthesis of Pyrrole-Fused C,N-Cyclic Azomethine Imines and Pyrazolopyrrolopyrazines: Analysis of Their Aromaticity Using Nucleus-Independent Chemical Shifts Values. *Org. Lett.* **2016**, *18*, 408-411.
- 5 Pagano, J. K.; Xie, J.; Erickson, K. A.; Cope, S. K.; Scott, B. L.; Wu, R.; Waterman, R.; Morris, D. E.; Yang, P.; Gagliardi, L.; Kiplinger, J. L. Actinide 2-metallabiphenylenes that satisfy Huckel's rule. *Nature* **2020**, *578*, 563-567.